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FENCE METHODS FOR MIXED MODEL SELECTION

BY JIMING JIANG,1 J. SUNIL RAO,2 ZHONGHUA GU AND THUAN NGUYEN

University of California, Davis, Case Western Reserve University, ALZA
Corporation and University of California, Davis

Many model search strategies involve trading off model fit with model
complexity in a penalized goodness of fit measure. Asymptotic properties for
these types of procedures in settings like linear regression and ARMA time
series have been studied, but these do not naturally extend to nonstandard
situations such as mixed effects models, where simple definition of the sam-
ple size is not meaningful. This paper introduces a new class of strategies,
known as fence methods, for mixed model selection, which includes linear
and generalized linear mixed models. The idea involves a procedure to iso-
late a subgroup of what are known as correct models (of which the optimal
model is a member). This is accomplished by constructing a statistical fence,
or barrier, to carefully eliminate incorrect models. Once the fence is con-
structed, the optimal model is selected from among those within the fence
according to a criterion which can be made flexible. In addition, we propose
two variations of the fence. The first is a stepwise procedure to handle situ-
ations of many predictors; the second is an adaptive approach for choosing
a tuning constant. We give sufficient conditions for consistency of fence and
its variations, a desirable property for a good model selection procedure. The
methods are illustrated through simulation studies and real data analysis.

1. Introduction. On the morning of March 16, 1971, Hirotugu Akaike, as he
was taking a seat on a commuter train, came out with the idea of a connection be-
tween the relative Kullback–Leibler discrepancy and the empirical log-likelihood
function, a procedure that was later named Akaike’s information criterion, or AIC
(Akaike [1, 2]; see Bozdogan [5] for the historical note). The idea has allowed
major advances in model selection and related fields (e.g., de Leeuw [7]).

The procedure essentially amounts to minimizing a criterion function of the
following form:

D̂M + λn|M|,(1)

where M represents a candidate model, D̂M is a measure of lack of fit by M and
|M| denotes the dimension of M , usually in terms of the number of estimated para-
meters under M . The main difference between procedures is made by λn, where n

Received March 2007; revised June 2007.
1Supported in part by NSF Grants DMS-02-03676 and DMS-04-02824.
2Supported in part by NSF Grants DMS-02-03724, DMS-04-05072 and NIH Grant K25-CA89868.
AMS 2000 subject classifications. Primary 62F07, 62F35; secondary 62F40.
Key words and phrases. Adaptive fence, consistency, F-B fence, finite sample performance,

GLMM, linear mixed model, model selection.

1669

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/07-AOS517
http://www.imstat.org
http://www.ams.org/msc/


1670 JIANG, RAO, GU AND NGUYEN

is the sample size. This is called a “penalizer,” although some authors refer λn|M|
as the penalizer. For example, λn = 2 for AIC. A number of similar criteria have
since been proposed, including the Bayesian information criterion (BIC; Schwarz
[26]) in which λn = log(n), and a criterion due to Hannan and Quinn (HQ; Han-
nan and Quinn [10]) in which λn = c log{log(n)} and c is a constant > 2. All these
procedures can be viewed as special cases of the generalized information crite-
rion (GIC; Nishii [21], Shibata [27]). A nice monograph on model selection from
various perspectives is edited by Lahiri [18].

Although these criteria are widely used, difficulties are often encountered, es-
pecially in some nonconventional situations. A broad class of such nonconven-
tional cases are mixed effects models, including linear and generalized linear
mixed models. For example, consider the following linear mixed model, yij =
x′
ij β +ui + vj + eij , i = 1, . . . ,m1, j = 1, . . . ,m2, where xij is a vector of known

covariates, β is a vector of unknown regression coefficients (the fixed effects), ui ,
vj are random effects and eij is an additional error. It is assumed that ui’s, vj ’s
and eij ’s are independent, and that for the moment, ui ∼ N(0, σ 2

u ), vj ∼ N(0, σ 2
v ),

eij ∼ N(0, σ 2
e ). It is well known (e.g., Hartley and Rao [11], Harville [13], Miller

[20]) that in this case, the effective sample size for estimating σ 2
u and σ 2

v is not
the total sample size m1 · m2, but m1 and m2, respectively. Now suppose that one
wishes to select the fixed covariates, which are components of xij under the as-
sumed model structure using BIC. It is not clear what should be in place of n in (1),
where λn = log(n) (it does not make sense to let n = m1 · m2). In fact, in cases of
correlated observations, such as the example here, the definition of “sample size”
is often unclear.

Furthermore, suppose that normality is not assumed in the above linear mixed
model. In fact, the only distributional assumptions are that the random effects and
errors are independent, and that they have means zero and variances σ 2

u , σ 2
v and

σ 2
e , respectively. Now suppose that one, again, wishes to select the fixed covariates

using AIC, BIC or HQ. It is not clear how to do this because all three require the
likelihood function in order to evaluate D̂M .

In a way, model selection and estimation are two components of a process called
model identification. While there is extensive literature on parameter estimation in
linear and generalized linear mixed models, the other component, that is, mixed
model selection, has received much less attention. Only recently have some results
emerged in the area of linear mixed model selection. Datta and Lahiri [6] discussed
a model selection method based on computation of the frequentist’s Bayes factor in
choosing between a fixed effects model and a random effects model. They focused
on a one-way random effects model and noted a connection between the choice
of fixed or random effects models and test of the hypothesis that the variance of
the random effects is zero. Note that, however, not all model selection problems
can be formulated as hypothesis testing. Jiang and Rao [16] developed various
GICs suitable for linear mixed model selection and proved consistency of their
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procedures. Meza and Lahiri [19] demonstrated the limitations of Mallows’ Cp

statistic in selecting the fixed covariates in a nested error regression model which
is a special case of the linear mixed models. They showed by simulation results
that the Cp method without modification does not work well when the variance of
the random effects is large; on the other hand, a modified Cp criterion obtained by
adjusting the intra-cluster correlations performs similarly as the Cp in regression
settings. Fabrizi and Lahiri [9] developed a robust model selection method in the
context of complex surveys. Another related paper is Vaida and Blanchard [28],
in which the authors proposed a conditional AIC where the penalty term is related
to the effective degrees of freedom for a linear mixed model proposed by Hodges
and Sargent [14].

It should be pointed out that all these studies are limited to linear mixed mod-
els, while model selection in generalized linear mixed models (GLMMs) has never
been seriously addressed in the literature. It is well known that the likelihood func-
tion under a GLMM may involve high-dimensional integrals which are difficult
to evaluate, which makes a procedure based on (1) computationally unattractive.
Furthermore, our simulation results suggested that in the case of GLMM selection,
a GIC procedure is much more sensitive to the choice of λn than in linear mixed
model selection.

In summary, the major concerns regarding the GIC procedures when applied
to mixed model selection are: (i) they depend on the effective sample size which
is unclear in typical situations of mixed models; (ii) they rely on the likelihood
function which may not be available; (iii) they do not seem applicable to GLMMs;
and (iv) their finite sample performance may be sensitive to different choices of
penalties. These motivate the development of a new procedure for mixed model
selection, called the fence method, which we describe in detail in the next section.
In Section 3, we propose two variations of the fence method. The first is a stepwise
fence procedure; the second is an adaptive fence procedure. In Section 4, we ad-
dress the issue of consistency of different fence methods. In Section 5, we present
some examples of simulations and real data analysis. Some concluding remarks
are made in Section 6. Proofs of the main results are given in Section 7.

2. The fence method. It is illustrative to first consider a simple example. Sup-
pose that the observations yij satisfy the following linear mixed model,

yij = x′
ij β + αi + εij ,(2)

i = 1, . . . ,m, j = 1, . . . , ni , where xij is a vector of covariates, β is a vector of
unknown regression coefficients, αi is a random effect and εij is an error. It is
assumed that the random effects and errors are independent such that E(αi) = 0,
var(αi) = σ 2, E(εij ) = 0 and var(εij ) = τ 2. Even for this simple model, there
are various model selection problems. For example, the selection of the fixed co-
variates; whether or not to include the random effects, etc. Our strategy is based
on a quantity QM = QM(y, θM), where y represents the vector of observations,
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M indicates a candidate model and θM denotes the vector of parameters under
M . It is required that E(QM) is minimized when M is a true model and θM

the true parameter vector under M . This means that QM is a measure of lack-
of-fit. Here by true model, we mean that M is a correct model, but not nec-
essarily the most efficient one. For example, suppose that yij satisfy (2) with
x′
ij β = β0 + β1x1ij + β2x2ij , where all the β’s are nonzero. Then for the problem

of selecting the fixed covariates, this model is optimal in the sense that the number
of fixed covariates cannot be further reduced. However, the model remains true if
in (2) x′

ij β = β0 + β1x1ij + β2x2ij + β3x
2
1ij (with β3 = 0). But the latter model

is not optimal. On the other hand, the model with x′
ij β = β0 + β1x1ij in (2) is an

incorrect model. In this paper, we use the terms “true model” and “correct model”
interchangeably. Below are some options for QM under different situations:

1. Maximum likelihood (ML) model selection. If the normality assumption is
made regarding the random effects and errors, an example of QM is the negative
of the log-likelihood under M .

2. Mean and variance/covariance (MVC) model selection. Suppose that the sit-
uation is a bit more complicated. First, the errors are correlated within the clusters
with some (parametric) covariance structure. Second, the normality assumption is
not made. In such a case, the likelihood function is not available. However, one
may consider QM = |(T ′V −1

M T )−1T ′V −1
M (y − μM)|2, where μM and VM are the

mean vector and covariance matrix under M , and T is a (not necessarily square)
matrix of full rank. Note that in this case, μM = XMβM , where XM is the matrix
of covariates under M and βM the vector of regression coefficients under M . Thus,
such a QM may be used to select the fixed covariates as well as the (parametric)
covariance structure. A special case of the MVC is least squares (LS) model selec-
tion, in which T = I , the identity matrix, hence QM = |y −XMβM |2. The latter is
useful, for example, if only the fixed covariates are subject to selection while the
covariance structure of the data is unknown.

It is easy to verify that all the QM above satisfy the basic requirement of lack-
of-fit above. Other choices of QM are considered in Jiang et al. [17].

2.1. Building the fence. Given a specific QM , let Q̂M = QM(y, θ̂M), where
θ̂M is the minimizer of QM over θM ∈ 	M , the parameter space under M , that
is, Q̂M = infθM∈	M

QM(θM,y). Let M̃ ∈ M be such that Q̂
M̃

= minM∈M Q̂M ,
where M represents the set of candidate models. We assume that M contains a true
model. Note that in many cases, M̃ can be determined without any calculation. For
example, if M contains a full model, say Mf, that is, a model such that all other
models in M are submodels of Mf, then clearly, M̃ = Mf and, since M contains a
true model, Mf is also a true model. In general, M may not contain a full model,
but the following lemma shows that at least in large sample, M̃ is expected to be a
correct model.

LEMMA 1. Under Assumptions A1–A5 in Section 4, we have with probability
tending to one that M̃ is a true model.
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The proof of Lemma 1 follows directly from that of Theorem 1 in the sequel.
However, the main question is, “Are there other correct models with smaller di-

mension than M̃?” This is where the fence idea comes in. As mentioned, the idea
is to construct a statistical barrier, called the fence, to carefully eliminate incor-
rect models. Then for the models within the fence which are considered correct,
one may use whatever criterion of optimality to select the optimal model. In many
cases, the criterion of optimality is minimal dimension of the model, but it may
be replaced by some other considerations, or incorporate scientific or economical
concerns. For example, in small area estimation (SAE, e.g., Rao [24]) a main prob-
lem of interest is the prediction of small area means. Thus, some measure of the
prediction errors, such as the mean squared prediction error, should be taken into
account in selecting the optimal model within the fence. By the way, the linear
mixed model (2), also known as the nested-error regression model (e.g., Battese,
Harter and Fuller [4]), has extensive applications in SAE. The fence is constructed
through the following inequality:

Q̂M ≤ Q̂
M̃

+ cnσ̂M,M̃
,(3)

where σ̂
M,M̃

is an estimate of the standard deviation of Q̂M − Q̂
M̃

, denoted by

σ
M,M̃

. It can be shown that the latter is an appropriate measure of Q̂M − Q̂
M̃

for a correct model M ; while for an incorrect model, the difference is expected
to be much larger. Furthermore, cn denotes a tuning constant. For consistency of
the model selection (see Section 4), it is required that cn increase (slowly) with
the sample size. Here consistency is in the sense that as the sample size increases,
the probability that the procedure selects an optimal model approaches one. In
Section 3.2, we show how to choose cn adaptively in order to improve the finite
sample performance.

In case the minimal dimension criterion is used, an effective algorithm is out-
lined below.

2.2. The fence algorithm. For simplicity, consider the case that M̃ is unique.
Let d1 < d2 < · · · < dL be all the different dimensions of the models M ∈ M. We
proceed as follows:

(i) Consider M1 = {M ∈ M : |M| = d1 and (3) holds}; if M1 �= ∅, stop (no
need for any more computation). Let M0 ∈ M1 be such that Q̂M0 = minM∈M1 Q̂M ;
M0 is the selected model.

(ii) If M1 = ∅, consider M2 = {M ∈ M : |M| = d2 and (3) holds}; if M2 �= ∅,
stop. Let M0 ∈ M2 be such that Q̂M0 = minM∈M2 Q̂M ; M0 is the selected model.

(iii) Continue until the program stops (it will at some point).

In short, the algorithm may be described as follows: Check the candidate mod-
els, from the simplest to the most complex. Once one has discovered a model that
falls within the fence and checked all the other models of the same simplicity (for
membership within the fence), one stops.
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2.3. Estimation of σ
M,M̃

. In some cases, this is straightforward. For example,
suppose that the likelihood function is available, and QM is chosen as the negative
log-likelihood. Furthermore, suppose that Mf ∈ M. Then under some regularity
conditions 2(Q̂M − Q̂Mf) has an asymptotic χ2

d distribution with d = |Mf| − |M|.
Thus, if M̃ = Mf, we have σM,Mf ≈ √

(|Mf| − |M|)/2.
However, such an asymptotic χ2 distribution may not exist in general. Nev-

ertheless, suppose that M∗ is true. Then in the case of clustered observations
one can approximate, under some regularity conditions, σ 2

M,M∗ by var(QM −
QM∗). Furthermore, suppose that QM can be expressed as

∑m
i=1 QM,i , where

QM,i = QM,i(yi, θM). Then var(QM − QM∗) = E[∑m
i=1(QM,i − QM∗,i)2 −∑m

i=1{E(QM,i) − E(QM∗,i)}2]. Thus, an observed variance is obtained by remov-
ing the outside expectation and replacing the parameters and inside expectations
by their estimators. See Jiang et al. [17] for more detail. The latter also consid-
ered several cases of nonclustered observations, including Gaussian mixed models,
non-Gaussian linear mixed models and GLMMs.

3. Variations. In this section, we propose two variations of the fence. The first
aims at making the fence procedure computationally more attractive. The second
focuses on choosing the tuning constant cn to improve the finite sample perfor-
mance of the fence.

3.1. A stepwise fence procedure. As mentioned, the fence has the computa-
tional advantage that it starts with the simplest models, and, therefore, may not
need to search the entire model space in order to determine the optimal model.
On the other hand, such a procedure may still involve a lot of evaluations when
the model space is large. For example, in quantitative trait loci mapping, variance
components arising from the trait genes, polygenic and environmental effects are
often used to model the covariance structure of the phenotypes given the iden-
tity by descent sharing matrix (e.g., Almasy and Blangero [3]). Such a model is
usually complex due to the large number of putative trait loci. To make the fence
procedure computationally more attractive to large and complex models, we pro-
pose the following variation of fence for situations of complex models with many
predictors.

To be more specific, consider the extended GLMMs introduced by Jiang and
Zhang [15]. It is assumed that given a vector α of random effects, the responses
y1, . . . , yn are conditionally independent, such that E(yi |α) = h(x′

iβ + z′
iα), 1 ≤

i ≤ n, where h(·) is a known function, β is a vector of unknown fixed effects and
xi , zi are known vectors. Furthermore, it is assumed that α ∼ N(0,�), where the
covariance matrix � depends on a vector ψ of variance components. Let βM and
ψM denote β and ψ under M , and gM,i(βM,ψM) = E{hM(x′

iβM + z′
i�

1/2
M ξ)},

where hM is the function h under M , �M is the covariance matrix under M eval-
uated at ψM , and the expectation is taken with respect to ξ ∼ N(0, Im) (which
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does not depend on M). Here m is the dimension of α and Im the m-dimensional
identity matrix. Let QM = ∑n

i=1{yi − gM,i(βM,ψM)}2.
Write X = (x′

i )1≤i≤n and Z = (z′
i )1≤i≤n. We assume that there is a collection

of covariate vectors X1, . . . ,XK , from which the columns of X are to be selected.
Furthermore, we assume that there is a collection of matrices Z1, . . . ,ZL such
that Zα = ∑

s∈S Zsαs , where S ⊂ {1, . . . ,L}, and each αs is a vector of i.i.d.
random effects with mean 0 and variance σ 2

s . The subset S is subject to selec-
tion. The parameters under an extended GLMM are the fixed effects and vari-
ances of the random effects. Note that in this case, the full model corresponding
to Xβ + Zα = ∑K

k=1 Xkβk + ∑L
l=1 Zlαl is among the candidate models. Thus,

we let M̃ = Mf. The idea is to use a forward–backward procedure to generate a
sequence of candidate models, among which the optimal model is selected using
the fence method. We begin with a forward procedure. Let M1 be the model that
minimizes Q̂M among all models with a single parameter; if M1 is within the
fence, stop the forward procedure; otherwise, let M2 be the model that minimizes
Q̂M among all models that add one more parameter to M1; if M2 is within the
fence, stop the forward procedure; and so on. The forward procedure stops when
the first model is discovered within the fence. The procedure is then followed by
a backward elimination. Let Mk be the final model of the forward procedure. If
no submodel of Mk with one less parameter is within the fence, Mk will be our
selection; otherwise, Mk is replaced by Mk+1 which is a submodel of Mk with one
less parameter and is within the fence, and so on. We call such a variation of fence
the forward–backward (F-B) fence.

3.2. Adaptive fence procedure. In this section, we address the issue regarding
choosing the tuning constant cn involved in (3). According to Theorem 1 in the se-
quel, for consistency of the fence, one needs cn → ∞ at a certain rate, but there are
many cn’s that satisfy this requirement. Also note that although for the consistency
it is not required that σ̂

M,M̃
be a consistent estimator of σ

M,M̃
as long as it has the

right order (see Section 4), there is always a constant involved which may make a
difference in a finite sample situation. The problem can be solved by choosing a
suitable cn.

We now introduce the idea of an adaptive procedure. Recall that M denotes the
set of candidate models, which includes a true model. To be more specific, we
assume that there is a full model Mf ∈ M, hence M̃ = Mf in (3); and that every
model in M \ {Mf} is a submodel of a model in M with one less parameter than
Mf. Let M∗ denote a model with minimum dimension among M ∈ M. First note
that ideally, one wishes to select cn that maximizes the probability of choosing
the optimal model. Here for simplicity, the optimal model is defined as a true
model that has the minimum dimension among all true models. This means that
one wishes to choose cn that maximizes

P = P(M0 = Mopt),(4)
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where Mopt represents the optimal model and M0 = M0(cn) is the model selected
by the fence procedure with the given cn. However, two things are unknown on
the right-hand side of (4): (i) under what distribution should the probability P be
computed? and (ii) what is Mopt?

To solve problem (i), note that the assumptions above on M imply that Mf is
a true model. Therefore, it is possible to bootstrap under Mf. For example, one
may estimate the parameters under Mf, then use a model-based bootstrap to draw
samples under Mf. This allows us to approximate the probability distribution P on
the right side of (4).

To solve problem (ii), we use the idea of maximum likelihood. Namely, let
p∗(M) = P∗(M0 = M), where M ∈ M and P∗ denotes the empirical probability
obtained by bootstrapping. In other words, p∗(M) is the sample proportion of
times out of the total number of bootstrap samples that model M is selected by the
fence method with the given cn. Let p∗ = maxM∈M p∗(M). Note that p∗ depends
on cn. The idea is to choose cn that maximizes p∗. It should be kept in mind
that the maximization is not without restriction. To see this, note that if cn = 0
then p∗ = 1 (because when cn = 0 the procedure always chooses Mf). Similarly,
p∗ = 1 for very large cn, if M∗ is unique (because when cn is large enough the
procedure always chooses M∗). Therefore, what one looks for is “the peak in the
middle” of the plot of p∗ against cn.

Here is another look at the method. Typically, the optimal model is the model
from which the data is generated, then this model should be the most likely given
the data. Thus, given cn, one is looking for the model (using the fence procedure)
that is most supported by the data or, in other words, one that has the highest (pos-
terior) probability. The latter is estimated by bootstrapping. Note that although the
bootstrap samples are generated under Mf, they are almost the same as those gen-
erated under the optimal model. This is because the estimates corresponding to
the zero parameters are expected to be close to zero, provided that the parameter
estimators under Mf are consistent. (Note that in some special cases, a nonmodel
based bootstrap algorithm can also be used. For instance, in the case of crossed
random effects, Owen [22] presents a pigeonhole bootstrap algorithm which can
be used effectively.) One then pulls off the cn that maximizes the (posterior) prob-
ability and this is the optimal choice, denoted by c∗

n.
A few technical issues deserve some attention:
1. Quite often the search for the peak in the middle finds multiple peaks (see

Figure 1). In such cases, one should pick the highest. This is supported by our
theoretical result, namely, Theorem 3 in the sequel which shows that p∗(c∗

n) → 1
in probability as n → ∞. It is also very common to have interval(s) of cn at which
p∗ is at the maximum, say, p∗ = 1. We then take the median of each interval,
and let c∗

n be the smallest of those medians, if there are more than one. The latest
strategy is called conservative. For example, in the case of variable selection this
strategy intends to make sure that no important variable is missing (in other words,
to minimize the probability of underfit).
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FIG. 1. Upper left: p∗ versus cn without adjusting the baseline under Model 4. Upper right: p∗
versus cn without adjusting the baseline under Model 5. Lower left: p∗ versus cn with adjusting the
baseline under Model 5. Lower right: p∗ versus cn with adjusting the baseline under Model 1. All
plots are made based on 100 bootstrap samples generated given the first simulated dataset.

2. There are two extreme cases which occur when the optimal model is either
the full model, Mf, or the minimum model, M∗. It should be pointed out that these
cases are rare in practice. For example, in most cases of variable selection, there are
a set of candidate variables and only some of them are important. This means that
the optimal model is neither the full model nor the minimum model. Furthermore,
when the extreme cases do occur, they are often easy to identify from the plot of
p∗ (see Figure 1). Alternatively, one can run screen tests for the extreme cases.
Such tests are recommended as supplementary tools to the inspection of the plot.

The first screen test is called full model test. The idea is the following. Define
Mf−1 as the set of all models with one less parameter than Mf. Suppose that when
Mf is the optimal model, we have E(Q̂M − Q̂Mf) ∼ an, ∀M ∈ Mf−1. Here un ∼ vn

means that both un/vn and vn/un are bounded. On the other hand, if Mf is not
optimal, there is M ∈ Mf−1 which is a true model, hence E(Q̂M − Q̂Mf) = O(bn),
where bn = o(an). It follows that minM∈Mf−1 E(Q̂M − Q̂Mf) = O(bn). Therefore,
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we consider

qn = {minM∈Mf−1 E(Q̂M − Q̂Mf)}2

anbn

.(5)

In practice, qn is replaced by its bootstrap estimate, q∗
n , obtained as above. If

q∗
n < 1, the full model test passes; otherwise, the full model test fails, in which

case we assign c∗
n = 0. The second screen test is called minimum model test. For

simplicity, we assume that there is a unique M∗ ∈ M that has the minimum di-
mension. Suppose that E(Q̂M∗ − Q̂Mf) = O(gn) if M∗ is incorrect; and the order
becomes O(hn) if M∗ is correct (hence optimal), where hn = o(gn). We then con-
sider

rn = {E(Q̂M∗ − Q̂Mf)}2

gnhn

.(6)

Let r∗
n be the bootstrap version of rn. If r∗

n > 1, the minimum model test passes;
otherwise, the minimum model test fails, in which case we assign c∗

n as the upper
bound of a sequence of values considered (see below).

One concern about the screen tests is that the quantities an, bn, gn, hn may
subject to scale change. Throughout this paper, we choose those quantities nat-
urally without additional constants. For example, if an = O(n), we simply take
an = n (not 2n or 3n). On the other hand, the minimum model test can be
replaced by the following threshhold checking which does not suffer from the
scale change. Assuming that M∗ is true (therefore, optimal), one can draw boot-
strap samples y∗∗,b, b = 1, . . . ,B under M∗. Then based on such bootstrap sam-

ples, compute d∗ = max1≤b≤B{Q̂∗
M∗,b − Q̂∗

M∗
f ,b

}, where M∗
f is defined below. If

Q̂M∗ − Q̂M∗
f

> d∗, do not consider the right tail of the plot of p∗ against cn that
goes up and stays at one (see Figure 1); otherwise, consider it. Unfortunately, the
same idea does not apply to the full model case. To see why, note that the thresh-
hold checking is similar to hypothesis testing. In the minimum model case, the
null hypothesis is that M∗ is true, therefore, one can draw bootstrap samples under
the null. However, in the full model case, the null hypothesis is that Mf is opti-
mal, which is equivalent to that none of the models in Mf −1 [defined above (5)] is
true. We do not know how to draw bootstrap samples under such a null. To solve
this problem, we use a method called adjusting the baseline. Consider, for sim-
plicity, the problem of selecting the fixed covariates under a linear mixed model.
Suppose that the candidate variables are X1, . . . ,Xs . Create an additional variable
that is unrelated to the data, for example, by generating a random vector X∗

s+1
whose components are i.i.d. ∼ N(0,1) and are independent of the data. Define the
model M∗

f as the model that includes X1, . . . ,Xs,X
∗
s+1. Then replace Q̂Mf in the

fence inequality by Q̂M∗
f
. Note that even though the baseline is adjusted, M∗

f is not
considered as a candidate model (because we know it is not optimal). Note that
after the baseline change, p∗ will not equal to one when cn = 0 (see Figure 1).
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Although the standard normal distribution is used to adjust the baseline, our simu-
lation results (see Section 5.1) suggest that the method is quite stable with respect
to different choices of baselines.

REMARK. In practice, if there is belief that M∗ and Mf are unlikely to be
the optimal model, neither the screen tests nor the baseline adjustment/threshhold
checking are necessary.

3. Finally, one needs to determine at which values of cn to evaluate p∗. Theoret-
ically, the range of cn is [0,∞), but practically one needs an upper bound. This can
be determined as follows. Note that any cn ≥ B = (Q̂M∗ − Q̂Mf)/σ̂M∗,Mf makes no
difference to the fence procedure (assuming no baseline adjustment). This is be-
cause then (3) is satisfied by M∗, hence M0 = M∗. Therefore, we choose the upper
bound of cn as B∗ = [B] + 1. We then divide the interval [0,B∗] by subintervals
of equal length and consider the end points.

REMARK. It turns out that requiring the existence of a full model or other
known true model from which to draw bootstrap samples is not much of a practical
problem, because in essence the adaptive fence can be done in two steps. In the first
step, one could use the fence with a fixed cn (e.g., cn = 1) to select a true model
(which may not be optimal). Then in the second step, one applies the adaptive
fence procedure with bootstrap samples drawn under the true model selected in
the first step. Note that in the first step, one does not need cn to increase in order
to select (with probability tending to one) a true model.

4. Consistency of fence, F-B fence and adaptive fence. We assume that the
following Assumptions A1–A4 hold for each M ∈ M, where θM represents a pa-
rameter vector at which E(QM) attains its minimum, and ∂QM/∂θM , and so forth,
represent derivatives evaluated at θM . Similarly, ∂Q̃M/∂θM , and so forth, represent
derivatives evaluated at θ̃M .

ASSUMPTION A1. QM is three-times continuously differentiable with re-
spect to θM ; and

E
(

∂QM

∂θM

)
= 0.(7)

ASSUMPTION A2. There is a constant BM such that QM(θ̃M) > QM(θM), if
|θ̃M | > BM .

ASSUMPTION A3. The equation ∂QM/∂θM = 0 has an unique solution.
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ASSUMPTION A4. There is a sequence of positive numbers an → ∞ and
0 ≤ γ < 1 such that the following hold: ∂QM/∂θM − E(∂QM/∂θM) = OP(a

γ
n ),

∂2QM/∂θM ∂θ ′
M − E(∂2QM/∂θM ∂θ ′

M) = OP(a
γ
n ), lim infa−1

n λmin{E(∂2QM/

∂θM ∂θ ′
M)} > 0, lim supa−1

n λmax{E(∂2QM/∂θM ∂θ ′
M)} < ∞, and there is δM > 0

such that sup|θ̃M−θM |≤δM
|∂3Q̃M/∂θM,j ∂θM,k ∂θM,l| = OP(an), 1 ≤ j, k, l ≤ pM ,

where pM = dim(θM).

In addition, we assume the following. Recall that cn is the constant in (3).

ASSUMPTION A5. cn → ∞; ∀ true model M∗ and incorrect model M , we
have E(QM) > E(QM∗), lim inf(σM,M∗/a2γ−1

n ) > 0 and cnσM,M∗/{E(QM) −
E(QM∗)} → 0.

ASSUMPTION A6. σ̂M,M∗ > 0 and σ̂M,M∗ = σM,M∗OP(1) if M∗ is true and
M incorrect; and σM,M∗ ∨ a

2γ−1
n = σ̂M,M∗OP(1) if both M and M∗ are true.

NOTE. (7) is satisfied if E(QM) can be differentiated inside the expectation.
Assumption A2 implies that |θ̂M | ≤ BM . To illustrate Assumptions A4 and A5,
consider the case of clustered responses (see the last paragraph of Section 2.3).
Then under regularity conditions, Assumption A4 holds with an = m and γ =
1/2. Furthermore, we have σM,M∗ = O(

√
m) and E(QM) − E(QM∗) = O(m),

provided that M∗ is true, M is incorrect and some regularity conditions hold. Thus,
Assumption A5 holds with γ = 1/2 and cn being any sequence satisfying cn →
∞ and cn/

√
m → 0. Finally, Assumption A6 does not require that σ̂M,M∗ be a

consistent estimator of σM,M∗—only that it has the same order as σM,M∗ .

LEMMA 2. Under Assumptions A1–A4, we have θ̂M − θM = OP(a
γ−1
n ) and

Q̂M − QM = OP(a
2γ−1
n ).

Let M0 be the model selected by fence using (3). The following theorem estab-
lishes consistency of the fence procedure.

THEOREM 1. Under Assumptions A1–A6, we have with probability tending
to one that M0 is a true model with minimum dimension.

The proofs of Lemma 2 and Theorem 1 are given in Sections 7.1 and 7.2, re-
spectively.

The next theorem establishes consistency of the F-B fence proposed in Sec-
tion 3.1. Note that the method is introduced in the case of extended GLMMs. Let
M

†
0 be the final model selected by the F-B fence procedure using (3).

THEOREM 2. Under Assumptions A1–A6, we have with probability tending
to one that M

†
0 is a true model and no proper submodel of M

†
0 is a true model.
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Note that here consistency is in the sense that with probability tending to one,
M

†
0 is a true model which cannot be further reduced or simplified. The proof is

given in Section 7.3.
Finally, we give sufficient conditions for the consistency of the adaptive fence

procedure introduced in Section 3.2. For simplicity, assume that Mopt is unique.
Consider the ratios rM = (Q̂M − Q̂Mf)/σ̂M,Mf , M ∈ M. Let Mw≤ denote the sub-
set of incorrect models with dimension ≤ |Mopt|. Write ropt = rMopt and rw≤ =
minM∈Mw≤ rM . Denote the c.d.f.s of ropt and rw≤ by Fopt and Fw≤, respectively.
Let M0(x) be the model selected by the fence procedure using (3) with cn = x, and
P(x) = P(M0(x) = Mopt). Let P ∗(x) be the bootstrap version of P(x). Denote the
bootstrap sample size by n∗. Recall the definitions of an, bn, qn, q∗

n in (5), gn, hn,
rn, r∗

n in (6), and B∗ above the final remark of Section 3.2. We make the following
assumptions.

ASSUMPTION A7 (Asymptotic distributional separation). If Mopt /∈ {Mf,M∗},
then for any ε > 0, there is 0 < δ ≤ 0.1, xn,1 < xn,2 < xn,3, and N ≥ 1
such that when n ≥ N the following hold: Fopt(xn,1) > 1 − ε, Fw≤(xn,3) ≤ ε,
P(xn,2) > 1 − δ, 1 − 4δ < P (xn,j ) ≤ 1 − 3δ, j = 1,3; if Mopt = Mf, we have
P(minM∈M,M �=Mf Q̂M > Q̂Mf) → 1 as n → ∞.

ASSUMPTION A8 (Good bootstrap approximation). If Mopt /∈ {Mf,M∗}, then
for any δ, η > 0, there are N ≥ 1, N∗ = N∗(n) such that, when n ≥ N and
n∗ ≥ N∗, we have P(supx>0 |P ∗(x) − P(x)| < δ) > 1 − η; if Mopt = Mf, we have
qn/q

∗
n = OP(1); if Mopt = M∗, we have q∗

n/qn = OP(1) and r∗
n/rn = OP(1).

For the most part, Assumption A7 says that there is an asymptotic separation
between the optimal model and the incorrect ones that matter in that the peak
of P(x) is distant from the area where rw≤ concentrates. This is reasonable be-
cause, typically, ropt is of lower order than rw≤. Therefore, one can find an in-
terval, (xn,1, xn,3), such that (3) is almost always satisfied by M = Mopt when
cn ∈ (xn,1, xn,3). On the other hand, (xn,1, xn,3) is distant from the area where rw≤
concentrates, so that ropt ≤ cn, rw≤ > cn with high probability, if cn ∈ (xn,1, xn,3).
Thus, P(x) is expected to peak in (xn,1, xn,3) while Fw≤(x) stays low in the re-
gion.

Recall that p∗ in the adaptive procedure is a function of cn, that is, p∗ = p∗(cn).
The following theorem establishes consistency of the adaptive fence. The proof is
given in Section 7.4.

THEOREM 3. Under Assumptions A7 and A8, the following hold:

(i) If Mopt /∈ {Mf,M∗}, then with probability tending to one there is c∗
n ∈ (0,∞)

which is at least a local maximum and approximate global maximum of p∗ in the
sense that for any δ, η > 0, there is N ≥ 1 and N∗ = N∗(n) such that P(p∗(c∗

n) ≥
1 − δ) ≥ 1 − η, if n ≥ N and n∗ ≥ N∗.
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(ii) In general, define c∗
n as⎧⎪⎪⎨

⎪⎪⎩

0, if q∗
n > 1,

B∗, if q∗
n ≤ 1, r∗

n < 1,
the c∗

n in (i), if q∗
n ≤ 1, r∗

n ≥ 1 and such a c∗
n exists,

1, otherwise.

Let M∗
0 be the model selected by the fence procedure using (3) with M̃ = Mf and

cn replaced by c∗
n. Then M∗

0 is consistent in the sense that for any η > 0 there is
N ≥ 1, N∗ = N∗(n) such that P(M∗

0 = Mopt) ≥ 1 − η, if n ≥ N and n∗ ≥ N∗.

5. Examples of simulations and data analysis.

5.1. The Fay–Herriot model—an illustration of adaptive fence method. The
Fay–Herriot model is widely used in small area estimation. It was first proposed
to estimate the per-capita income of small places with population less than 1,000
(Fay and Herriot [8]). The model can expressed as yi = x′

iβ +vi +ei , i = 1, . . . ,m,
where xi is a vector of known covariates, β is a vector of unknown regression co-
efficients, vi ’s are area-specific random effects and ei ’s represent sampling errors.
It is assumed that vi , ei are independent with vi ∼ N(0,A) and ei ∼ N(0,Di).
The variance A is unknown, but the sampling variances Di ’s are assumed known.

Let X = (x′
i )1≤i≤m, so that the model can be expressed as y = Xβ + v + e,

where y = (yi)1≤i≤m, v = (vi)1≤i≤m and e = (ei)1≤i≤m. The first column of X

is assumed to be 1m which corresponds to the intercept. The rest of the columns
of X are to be selected from a set of candidate covariate vectors X2, . . . ,XK ,
which include the true covariate vectors. First note that by applying the follow-
ing transformation, we can simplify the problem to the case Di = 1. Let D =
1 + max1≤i≤m Di . Draw independent samples u1, . . . , um independent with the
vi ’s and ei’s such that ui ∼ N(0,D−Di), 1 ≤ i ≤ m. Then let ỹi = (yi +ui)/

√
D,

x̃i = xi/
√

D, ṽi = vi/
√

D and ẽi = (ei +ui)/
√

D. Consider ỹi ’s as the new obser-
vations. Then we have ỹi = x̃′

iβ + ṽi + ẽi , i = 1, . . . ,m, where ṽi , ẽi , i = 1, . . . ,m,
are independent with ṽi ∼ N(0, Ã), Ã = A/D and ẽi ∼ N(0,1). Thus, without
loss of generality, we let Di = 1, 1 ≤ i ≤ m.

Consider the fence ML model selection (see Section 2). It is easy to show that in
this case, Q̂M = (m/2){1 + log(2π) + log(|PX⊥y|2/m)}, where PX⊥ = Im − PX

and PX = X(X′X)−1X′. We assume for simplicity that X is of full rank. Then
Q̂M − Q̂Mf = (m/2) log(|PX⊥y|2/|PX⊥

f
y|2). Furthermore, it can be shown that

when M is a true model, we have Q̂M − Q̂Mf = (m/2) log(1 + K−p
m−K−1F), where

p + 1 is the number of columns of X, and F ∼ FK−p,m−K−1. Therefore, σM,Mf is
completely known given |M| and can be evaluated accurately (e.g., by numerical
integration).

We carry out a simulation study to evaluate the performance of the adaptive
method. Here we consider the adaptive method assisted either by the screen tests
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TABLE 1
Fence methods with different cn’s in the Fay–Herriot model

Optimal model 1 2 3 4 5

Adaptive cn (ST) 100 100 100 99 100
Adaptive cn (B/T) 99 100 100 99 100
cn = log log(n) 52 63 70 83 100
cn = log(n) 96 98 99 96 100
cn = √

n 100 100 100 100 100
cn = n/ log(n) 100 91 95 90 100
cn = n/ log log(n) 100 0 0 0 6

(ST) or the baseline adjustment/threshhold checking (B/T). We consider a (rela-
tively) small sample situation with m = 30. With K = 5, X2, . . . ,X5 were gen-
erated from the N(0,1) distribution, and then fixed throughout the simulations.
The candidate models include all possible models with at least an intercept (thus,
there are 24 = 16 candidate models). We consider five cases in which the data y

is generated from the model y = ∑5
j=1 βjXj + v + e, where β ′ = (β1, . . . , β5) =

(1,0,0,0,0), (1,2,0,0,0), (1,2,3,0,0), (1,2,3,2,0) and (1,2,3,2,3), denoted
by Models 1, 2, 3, 4, 5, respectively. The true value of A is 1 in all cases. The
number of bootstrap samples for the evaluation of the p∗’s is 100.

In addition to the adaptive method, we consider five different (nonadaptive) cn’s
(n = m in this case), which satisfy the consistency requirements given in Theo-
rem 1 (note that these requirements reduce to cn → ∞ and cn/n → 0 in this case).
These are cn = log log(n), log(n),

√
n, n/ log(n) and n/ log log(n). Reported in

Table 1 are percentage of times, out of 100 simulations that the optimal model was
selected by each method.

Summary. Although the reported results for Adaptive cn (B/T) were obtained
using N(0,1) for the baseline adjustment, the same simulations were carried out
when N(0,1) is replaced by Uniform[0,1], Poisson(1) and Bernoulli distributions.
The only (slight) differences in the results are those under Model 1, which are 99,
98 and 100, respectively, for Uniform[0,1], Poisson(1) and Bernoulli. This sug-
gests that the method is not very sensitive to different choices of baselines which
is what one desires. Figure 1 displays the plots of p∗ against cn in a number of sit-
uations. Furthermore, we explore the two-step adaptive fence procedure (with ST)
described in the last remark of Section 3.2 and the same results were obtained.

It seems that performance of the fence with cn = log(n),
√

n or n/ log(n) is
fairly close to that of the adaptive fence. In any particular situation, one might get
lucky to find a good cn value by chance, but one cannot be lucky all the time. In
fact, for more complicated mixed models, the definition of the sample size may
not simply be the total number of observations or the number of clusters so, for
example, something like log(n) or

√
n may not make sense.
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COMPUTATIONAL NOTE. The simulations of this subsection were run on a
Pentium Dual Core CPU 3.2 GHz, memory 4 GB, Harddrive 500 GB. The times
it took to run the first simulation of Adaptive cn (B/T) under Models 1–5 were
1.7 sec., 3.0 sec., 4.1 sec., 4.4 sec. and 5.3 sec., respectively.

5.2. Linear mixed models for clustered data. We consider the following lin-
ear mixed model (see Jiang and Rao [16]), yij = x′

ij β + αi + εij , i = 1, . . . ,m,
j = 1, . . . ,K , where xij is a vector of covariates and β a vector of unknown regres-
sion coefficients (the fixed effects). The random effects α1, . . . , αm, are generated
independently from N(0, σ 2). The errors are generated so that εi = (εij )1≤j≤K ,
i = 1, . . . ,m, are independent and multivariate normal with Var(εi) = τ 2{(1 −
ρ)I + ρJ }, where I is the identity matrix and J matrix of 1’s. Finally, the random
effects are uncorrelated with the errors.

Now pretend that the covariance matrix of the data is unknown. The problem is
to select the fixed covariates. Write the model as y = Xβ +Zα + ε. The candidate
covariates which are columns of X are X1, . . . ,X5, where X1 is a vector of 1’s and
X2, . . . ,X4 are generated randomly from the N(0,1) distribution, and then fixed
throughout the simulations. We consider the QM for LS model selection (described
above Section 2.1) which is suitable for this situation.

We examine the performance of fence with fixed cn = 1.1 and that of the adap-
tive fence. As comparison, two GICs developed in Jiang and Rao [16]) are consid-
ered, which are similar to (1) for this problem: (i) λn = 2 which corresponds to the
Cp method; and (ii) λn = logn, where n = mK , which corresponds to the BIC.
The latter choice satisfies the conditions of Theorem 1 in Jiang and Rao [16] for
consistent model selection for this setting.

We consider the case where the errors have varying degrees of exchangeable
structure. Four values of ρ were considered: 0,0.2,0.5,0.8. The random effects
and errors were simulated from normal distributions with σ = τ = 1. We set the
number of clusters to be m = 100 and the number of observations within a clus-
ter to be K = 5. Three (true) β’s are considered: (2,0,0,4,0), (2,9,0,4,8) and
(1,2,3,2,3). A total of 100 realizations of each simulation were run.

Summary. The results reported in Table 2 for adaptive fence are those under
B/T (see the previous subsection). The same results were obtained under ST. The
fence method with fixed cn is seen to have robust selection performance in most
situations considered. In cases where the true model was relatively small in dimen-
sion, the fence method suffers some from overfitting. The overfitting proneness in
these few situations is less than that found when using Cp but more than that found
when using BIC. Selection performance in the second situation with a larger true
model with high signal is solid for the fence method. However, in the last situation
with the optimal model being the full model with all weak covariates, both BIC and
Cp tend to underfit. The fence method still shines having excellent performance
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with comparatively little or no underfitting empirically observed (note that over-
fitting is not possible in this situation). The effect of increasing correlation in the
errors (i.e., clustering) is to act as a means of reducing effective sample size. The
end result is that as the correlation between observations within a cluster increases,
selection performance for all fixed penalization methods degrades somewhat. The
adaptive fence on the other hand shines in all situations giving 100% selection ac-
curacy. This clearly demonstrates the effectiveness of the adaptive fence method
(at a computational cost, of course).

5.3. Prenatal care for pregnancy. This real-data example is an application of
the F-B fence procedure to GLMMs (see Section 3.1). Rodriguez and Goldman
[25] considered a dataset from a survey conducted in Guatemala regarding the use
of modern prenatal care for pregnancies where some form of care was used (Pe-
bley [23]). While Rodriguez and Goldman focused on assessing the performance
of the approximation method that they developed in fitting a three-level variance
component logistic model, we consider applying the fence method in selection
of the fixed covariates in the variance component logistic model. The models are
described as follows.

Suppose that given the random effects at community levels ui , 1 ≤ i ≤ m

and random effects at family levels vij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni , binary re-
sponses yijk , 1 ≤ i ≤ m, 1 ≤ j ≤ ni , 1 ≤ k ≤ nij , are conditionally independent
with πijk = E(yijk|u, v) = P(yijk = 1|u, v). Furthermore, suppose that the ran-
dom effects are independent with ui ∼ N(0, σ 2) and vij ∼ N(0, τ 2). The follow-
ing models for the conditional means are considered such that under model M ,

TABLE 2
Simulation results: linear mixed model selection. Reported are probabilities of correct selection

(underfitting, overfitting) as percentages estimated empirically from 100 realizations of the
simulation. Cp and BIC results for Models 1 and 2 were taken from Jiang and Rao [16]

Optimal model ρ Cp BIC Fence (cn = 1.1) Adaptive fence

β ′ = (2,0,0,4,0) 0 64(0, 36) 97(0, 3) 94(0, 6) 100(0, 0)
0.2 57(0, 43) 94(0, 6) 91(0, 9) 100(0, 0)
0.5 58(0, 42) 96(1, 3) 86(0, 14) 100(0, 0)
0.8 61(0, 39) 96(0, 4) 72(0, 28) 100(0, 0)

β ′ = (2,9,0,4,8) 0 87(0, 13) 99(0, 1) 100(0, 0) 100(0, 0)
0.2 87(0, 13) 99(0, 1) 100(0, 0) 100(0, 0)
0.5 80(0, 20) 99(0, 1) 99(0, 1) 100(0, 0)
0.8 78(1, 21) 96(1, 3) 94(0, 6) 100(0, 0)

β ′ = (1,2,3,2,3) 0 85(15, 0) 81(19, 0) 100(0, 0) 100(0, 0)
0.2 79(21, 0) 73(27, 0) 100(0, 0) 100(0, 0)
0.5 74(26, 0) 64(36, 0) 97(3, 0) 100(0, 0)
0.8 44(56, 0) 26(74, 0) 94(6, 0) 100(0, 0)
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logit(πijk) = X′
M,ijkβM + ui + vij , where XM,ijk is a subvector of the full set of

fixed covariates and βM the corresponding vector of regression coefficients.
Let ψ = (σ 2, τ 2)′. The vector of parameters under model M is θM = (β ′

M,ψ ′)′.
We use the QM introduced earlier for extended GLMMs (see the second para-
graph of Section 3.1). An estimated σ 2

M,M∗ can be obtained using the idea of ob-
served variance (see Section 2.3, and Jiang et al. [17] for detail). The expectations
involved in QM are evaluated by numerical integration. Since the number of co-
variates considered is quite large, to keep the computational time manageable, we
apply the F-B fence procedure introduced in Section 3.1 with cn = 1.

The data analysis has selected the following variables (in the order that they
were selected in the forward procedure): Proportion indigenous (1981), Modern
toilet in household, Husband’s education secondary or better, Husband’s educa-
tion primary, Television watched daily, Distance to nearest clinic, Mother’s ed-
ucation primary, Television not watched daily, Mother’s education secondary or
better, Indigenous (no Spanish), Indigenous (Spanish), Mother age, Husband agri-
culture employee, Husband agriculture self-employee, Child age, Birth order 4–6
and Husband’s education missing. There are some interesting differences between
the fixed effects discovered by the fence versus those found by standard maxi-
mum likelihood analysis using a 5% significance level as reported in Rodriguez
and Goldman [25]. First, Husband’s education overall (primary or higher rela-
tive to the reference group of no education for the husband) was found to be an
important predictor whereas Rodriguez and Goldman found that only Husband’s
secondary education was important. Our more uniform finding is also in line with
the finding for Mother’s education. The implication is that education of some kind
is important for both the mother and husband to have. A similar kind of finding
was observed for variables corresponding to husband’s profession. We found that
regardless of what type of agricultural employment the husband had, it was an
important predictor overall. Rodriguez and Goldman report that only nonself em-
ployed agricultural jobs for the husband mattered. The fence method also uniquely
found that watching television (daily or not) was an important predictor. This can
be intuitively justified since it provides a medium for women to learn more about
modern prenatal health care methods, and thus make it more likely for them to
choose to use such methods. Other findings were in line with those of Rodriguez
and Goldman [25].

6. Concluding remarks. Fence is different from procedures like AIC, BIC
in that there is no criterion function that is minimized. In other words, instead
of trying to find an “optimal” model that minimizes a criterion function, fence
proposes to carry out the optimization by two steps. The first step is to identify
the set of true models (the ones that are in the fence) or, in case a true model
does not exist, the models that best approximate the real-life problem. Note that
although in this paper we have assumed the existence of a true model, the method
can be easily extended to the situation where a true model does not exist, or is
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understood as the one that provides the best approximation. On the other hand, the
second step of fence, which identifies the model with minimal dimension within
the fence, is quite flexible. For example, the dimension of a model may not be
defined as the number of estimated parameters (e.g., Hastie and Tibshirani [12],
Ye [29]); or it may be replaced by some other considerations, such as economical
concerns. In fact, practically speaking, optimality in model selection usually goes
beyond statistics. Keeping this in mind, it appears that the fence procedure is easier
to incorporate with other scientific or economical criteria than minimizing a single
criterion function determined before the scientific or economic problem.

A good feature of the fence algorithm is that it needs not search over all the
candidate models in order to find the optimal model.

In this paper, we have demonstrated the robust performance of fence in linear
and generalized linear mixed model selection. In addition, we have introduced a
stepwise fence procedure to handle situations of large number of predictors. Fur-
thermore, we have proposed an adaptive procedure for choosing a tuning constant
involved in the fence method. The adaptive procedure improves the finite sample
performance of fence at a computational cost. On the theoretical side, we have
established consistency of the different fence procedures, with the proofs given in
the next section.

7. Proofs.

7.1. Proof of Lemma 2. Assumptions A2 and A3 imply that θ̂M is the unique
solution to ∂QM/∂θM = 0. By Taylor expansion, we have

Q̃M − QM

=
(

∂QM

∂θM

)′
(θ̃M − θM) + 1

2
(θ̃M − θM)′

(
∂2QM

∂θM ∂θ ′
M

)
(θ̃M − θM)

+ 1

6

∑
j,k,l

(
∂3Q∗

M

∂θM,j ∂θM,k ∂θM,l

)
(θ̃M,j − θM,j )(θ̃M,k − θM,k)(θ̃M,l − θM,l)

= I1 + 1

2
I2 + 1

6
I3

for any θ̃M , where ∂3Q∗
M/ · · · represents the third derivatives evaluated at θ∗

M ,
which lies between θM and θ̃M . For any ε > 0, by Assumptions A1 and A4, there
are δ > 0 and N0 ≥ 1 such that λmin{E(∂2QM/∂θM ∂θ ′

M)} ≥ δan, n ≥ N0, and
L1 > 0 such that the probability is greater than 1 − ε that |∂QM/∂θM | ≤ L1a

γ
n ,∥∥∥∥ ∂2QM

∂θM ∂θ ′
M

− E
(

∂2QM

∂θM ∂θ ′
M

)∥∥∥∥ ≤ L1a
γ
n ,

max
j,k,l

sup
|θ̃M−θM |≤δM

∣∣∣∣ ∂3Q̃M

∂θM,j ∂θM,k ∂θM,l

∣∣∣∣ ≤ L1an.
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Now choose L2 > 0 such that δL2 > 2L1. Let 	M,L2 = {θ̃M : |θ̃M − θM | ≤
L2a

γ−1
n }, and 	̄M,L2 be the boundary of 	M,L2 , that is, 	̄M,L2 = {θ̃M : |θ̃M −

θM | = L2a
γ−1
n }. Then choose N1 ≥ 1 such that L2a

γ−1
n ≤ δM , n ≥ N1. It follows

that for θ̃ ∈ 	̄M,L2 , we have |I1| ≤ L1L2a
2γ−1
n , I2 ≥ δL2

2a
2γ−1
n − L1L

2
2a

3γ−2
n ,

|I3| ≤ L1an(
∑

j |θ̃M,j − θM,j |)3 ≤ L1L
3
2p

3/2
M a

3γ−2
n , hence

Q̃M − QM

≥ 1
2L2a

2γ−1
n

{
δL2 − 2L1 − L1L2

(
1 + 1

3L2p
3/2
M

)
aγ−1
n

}
,(8)

∀θ̃ ∈ 	̄M,L2 . If we choose N2 ≥ 1 such that, when n ≥ N2, the quantity inside {· · ·}
on the right-hand side of (8) is positive, and let N = N0 ∨ N1 ∨ N2, then we have
with probability greater than 1 − ε, that Q̃M > QM , ∀θ̃ ∈ 	̄M,L2 . It follows that

P(|θ̂M −θM | < L2a
γ−1
n ) ≥ 1−ε, if n ≥ N . This proves that θ̂M −θM = OP(a

γ−1
n ).

By similar arguments, it can be shown that for any ε > 0, there are constants L,
L1, L2 and N ≥ 1 such that, when n ≥ N ,

Q̂M − QM ≤ L1L2a
2γ−1
n + 1

2LL2
2a

2γ−1
n + 1

2L1L
2
2a

3γ−2
n + 1

6L1L
3
2p

3/2
M a3γ−2

n

≤ L2
{
L1 + 1

2(L + L1)L2 + 1
6L1L

2
2p

3/2
M

}
a2γ−1
n

with probability > 1 − ε. This proves that Q̂M − QM = OP(a
2γ−1
n ).

7.2. Proof of Theorem 1. For the most part, we show that with probability
tending to one (w.p. → 1), all the true models (with |M| < |M̃|) are in the fence,
and all the incorrect ones are out.

Let M be an incorrect model and M∗ a true model. By Lemma 2 and Assump-
tion A5, we have Q̂M − Q̂M∗ = QM − QM∗ + Q̂M − QM − (Q̂M∗ − QM∗) =
QM −QM∗ +OP(a

2γ−1
n ) = E(QM)−E(QM∗)+{QM −QM∗ −E(QM −QM∗)}+

OP(a
2γ−1
n ) = E(QM) − E(QM∗) + σM,M∗OP(1) = {E(QM) − E(QM∗)}{1 +

oP(1)}. It follows that, w.p. → 1, we have Q̂M > Q̂M∗ . This implies that w.p. → 1,
M̃ is a true model (because an incorrect model cannot be the minimizer).

Furthermore, it is seen from this argument that if M is incorrect, we have

Q̂M − Q̂M∗

= cnσ̂M,M∗
[

cnσM,M∗

E(QM) − E(QM∗)

(
σ̂M,M∗

σM,M∗

)
{1 + oP(1)}−1

]−1

.(9)

Assumptions A5 and A6 imply that the quantity inside [· · ·] in (9) is oP(1). There-
fore, w.p. → 1, we have Q̂M > Q̂M∗ + cnσ̂M,M∗ . It follows that

P(|M| < |M̃|,M ∈ M̃−)

≤ P(Q̂M ≤ Q̂
M̃

+ cnσ̂M,M̃
)
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≤ ∑
M∗ is true

P(Q̂M ≤ Q̂M∗ + cnσ̂M,M∗, M̃ = M∗) + P(M̃ is incorrect)

≤ ∑
M∗ is true

P(Q̂M ≤ Q̂M∗ + cnσ̂M,M∗) + P(M̃ is incorrect) → 0.

Let E1 = ⋂
M is incorrect,|M|<|M̃|{M /∈ M̃−}, then Ec

1 = ⋃
M is incorrect{|M| < |M̃|,

M ∈ M̃−}, hence P(Ec
1) → 0. This proves the “out” part.

On the other hand, if M and M∗ are both true models, then by the property of
QM , we have E(QM) = E(QM∗). Therefore, by similar arguments and Assump-
tion A6, we have Q̂M − Q̂M∗ = QM − QM∗ + OP(a

2γ−1
n ) = σ̂M,M∗OP(1). Since

cn → ∞, we have, w.p. → 1, Q̂M ≤ Q̂M∗ + cnσ̂M,M∗ . It follows that

P(|M| < |M̃|,M /∈ M̃−)

≤ P(Q̂M > Q̂
M̃

+ cnσ̂M,M̃
)

≤ ∑
M∗ is true

P(Q̂M > Q̂M∗ + cnσ̂M,M∗, M̃ = M∗) + P(M̃ is incorrect)

≤ ∑
M∗ is true

P(Q̂M > Q̂M∗ + cnσ̂M,M∗) + P(M̃ is incorrect) → 0.

Let E2 = ⋂
M is true,|M|<|M̃|{M ∈ M̃−}, then Ec

2 = ⋃
M is true{|M| < |M̃|,M /∈

M̃−}, hence P(Ec
2) → 0. This proves the “in” part.

Finally, note that {M0 is optimal} ⊃ E0 ∩ E1 ∩ E2, where E0 = {M̃ is true}.

7.3. Proof of Theorem 2. First note that like the fence procedure, the F-B fence
is guaranteed to stop at some point. This is because, otherwise, one keeps adding
the parameters until one gets the full model, which automatically satisfies the fence
inequality (note that in this case M̃ is chosen as the full model).

Next we show that w.p. → 1, M
†
0 is a true model. Suppose that this is not the

case. Then there is an incorrect model, say, M , such that

P(M
†
0 = M) ≥ δ,(10)

where δ > 0 is a constant. Since M̃ is a true model, we have by the proof of
Theorem 1 that w.p. → 1, Q̂M > Q̂

M̃
+ cnσ̂M,M̃

. On the other hand, M
†
0 = M

implies that Q̂M ≤ Q̂
M̃

+ cnσ̂M,M̃
[because M

†
0 has to satisfy (3)]. Thus, we have

P(M
†
0 = M) ≤ P(Q̂M ≤ Q̂

M̃
+ cnσ̂M,M̃

) → 0, which contradicts (10).

We next show that w.p. → 1, no proper submodel of M
†
0 is a true model. Sup-

pose that this is not true. Then there is a true model M1 and a constant δ > 0
such that P(M1 ⊂ M

†
0 ) ≥ δ. Hereafter, the notation M1 ⊆ M2 (M1 ⊂ M2) means

that M1 is a (proper) submodel of M2. Suppose that under M
†
0 , Xβ + Zα =
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∑
r∈R0

Xrβr + ∑
s∈S0

Zsαs , and, under M1, the same expression holds with R0,
S0 replaced by R1, S1, respectively. Define R10 = R1 ∪ {r1, . . . , ra−1}, S10 = S0, if
R1 ⊂ R0, S1 ⊆ S0 and R0 \R1 = {r1, . . . , ra}; R10 = R0, S10 = S1 ∪{s1, . . . , sb−1},
if R1 = R0, S1 ⊂ S0 and S0 \S1 = {s1, . . . , sb}; and R10 = R1, S10 = S1 otherwise.
Let M10 be the model corresponding to R10 and S10. Then M1 ⊂ M

†
0 implies that

M10 ⊂ M
†
0 with one less parameter, hence we must have Q̂M10 > Q̂

M̃
+ cnσ̂M10,M̃

by the definition of M
†
0 . It follows that

P(Q̂M10 > Q̂
M̃

+ cnσ̂M10,M̃
) ≥ δ.(11)

On the other hand, we have by the proof of Theorem 1 that for any true model M ,
w.p. → 1, Q̂M ≤ Q̂

M̃
+ cnσ̂M,M̃

. Since M10 is always a true model, it follows

that P(Q̂M10 > Q̂
M̃

+ cnσ̂M10,M̃
) ≤ ∑

M true P(Q̂M > Q̂
M̃

+ cnσ̂M,M̃
) → 0, which

contradicts (11).

7.4. Proof of Theorem 3. (i) For any ε, η > 0, let δ, xn,j , j = 1,2,3, N and N∗
be as in Assumptions A7 and A8. Then when n ≥ N and n∗ ≥ N∗, the following
arguments hold with probability > 1 − η.

For j = 1,3, we have P∗(xn,j ) > P (xn,j ) − δ > 1 − 5δ ≥ 1/2. It follows that
p∗(xn,j ) = maxM∈M P ∗(M0(xn,j ) = M) = P ∗(xn,j ) < P (xn,j ) + δ ≤ 1 − 2δ.
Similarly, p∗(xn,2) = P ∗(xn,2) > P (xn,2) − δ > 1 − 2δ. Thus, there is c∗

n ∈
(xn,1, xn,3) which is the maximum of p∗ over [xn,1, xn,3]. Furthermore, we have
p∗(c∗

n) ≥ p∗(xn,2) > 1 − 2δ.
(ii) If Mopt = Mf, then qn ∼ an/bn, hence q−1

n = (bn/an)O(1) = o(1). Also,
by Assumption A8, for any η > 0, there is L > 0 such that P(qn/q

∗
n > L) < η.

Choose N1 ≥ 1 such that q−1
n < 1/L when n ≥ N1. Then, when n ≥ N1, we have,

w. p. > 1 − η, (q∗
n)−1 = q−1

n (qn/q
∗
n) < 1, hence q∗

n > 1, hence c∗
n = 0. On the

other hand, by Assumption A7, there is N2 ≥ 1 such that P(minM∈M,M �=Mf Q̂M >

Q̂Mf) > 1 −η, if n ≥ N2. Let N = N1 ∨N2, then P(M∗
0 = Mf) > 1 − 2η, if n ≥ N .

If Mopt = M∗, then by similar arguments, it can be shown that r∗
n = oP(1) and

q∗
n = oP(1). Thus, for any η > 0, there is N ≥ 1 such that when n ≥ N we have,

w.p. > 1 − η, q∗
n ≤ 1 and r∗

n < 1, hence c∗
n = B∗, hence M∗

0 = M∗.
If Mopt /∈ {Mf,M∗}, note that {M∗

0 = Mopt} ⊃ {ropt ≤ c∗
n, rw≤ > c∗

n} ⊃ {ropt ≤
xn,1, rw≤ > xn,3}, if c∗

n ∈ (xn,1, xn,3). Therefore, by (i), for any ε, η > 0, we have

P(M∗
0 = Mopt) ≥ P

(
M∗

0 = Mopt, c
∗
n ∈ (xn,1, xn,3)

)
≥ P

(
ropt ≤ xn,1, rw≤ > xn,3, c

∗
n ∈ (xn,1, xn,3)

)
≥ Fopt(xn,1) − Fw≤(xn,3) − P

(
c∗
n /∈ (xn,1, xn,3)

)
> 1 − 2ε − η,n ≥ N,n∗ ≥ N∗.
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