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SUMMARY

Fencemethod (Jiangand others2008. Fence methods for mixed model selection.Annals of Statistics
36, 1669–1692) is a recently proposed strategy for model selection. It was motivated by the limitation of
the traditional information criteria in selecting parsimonious models in some nonconventional situations,
such as mixed model selection. Jiangand others(2009. A simplified adaptive fence procedure,Statistics
& Probability Letters79, 625–629) simplified the adaptive fence method of Jiangand others(2008) to
make it more suitable and convenient to use in a wide variety of problems. Still, the current modifica-
tion encounters computational difficulties when applied to high-dimensional and complex problems. To
address this concern, we proposed a restricted fence procedure that combines the idea of the fence with
that of the restricted maximum likelihood. Furthermore, we propose to use the wild bootstrap for choos-
ing adaptively the tuning parameter used in the restricted fence. We focus on problems of longitudinal
studies and demonstrate the performance of the new procedure and its comparison with other procedures
of variable selection, including the information criteria and shrinkage methods, in simulation studies. The
method is further illustrated by an example of real-data analysis.

Keywords: Covariate variable selection; Longitudinal data; Restricted fence method; Wild boostrapping.

1. INTRODUCTION

Recently, Jiangand others(2008) developed a new strategy for model selection, known as the “fence”
methods. The basic idea is to build a statistical fence, or barrier, to carefully isolate a subgroup of what
are known as the correct models. Once the fence is constructed, the optimal model is selected from those
within the fence according to a criterion which can incorporate quantities of practical interest.Jiangand
others(2009) developed a simplified adaptive fence (SAF) procedure to reduce the computational burden
of the adaptive fence ofJiangand others(2008) (see Section2.2 for more details). A summary of the
fence methods is provided in the supplementary appendix available atBiostatisticsonline. On the other
hand, even with the SAF, one may still encounter computational difficulties when applying the fence to
high-dimensional and complex problems. The main difficulty rests in the evaluation of a large number of
measures of lack-of-fit for every bootstrap sample if, for example, the number of candidate variables is
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fairly large. Furthermore, as inJiangand others(2008), the adaptive fence or SAF involve bootstrapping
under the full model. Such a procedure may not be robust and can be time consuming if the full model is
complex.

To address these concerns, we propose a restricted fence procedure that combines the idea of the
fence with that of the restricted maximum likelihood (REML). We show how to implement the restricted
fence via a wild bootstrap procedure, whose validity is discussed. Finite sample performance of the re-
stricted fence is studied as well as its comparison with the information criteria and shrinkage methods of
variable selection in a number of simulation studies. The method is further illustrated using a real-data
example. Further results and technical derivations are deferred to the supplementary appendix available at
Biostatisticsonline.

2. RESTRICTED FENCE PROCEDURE

2.1 Method

TheREML is well known in mixed model analysis (e.g.Jiang,2007). The idea is to first apply a trans-
formation to the data to get rid of the (nuisance) fixed effects. Maximum likelihood (ML) is then applied
with the transformed data to estimate the variance components. The transformation is constructed so that
there is no loss of information in estimating the variance components. Our idea is to combine the ideas
of REML and SAF to come up with a strategy for variable selection. We focus on longitudinal studies in
which the mean response is often of main interest. As a result, selection of the fixed covariates that are
directly associated with the mean is of main interest. Quite often in such studies, the number of candidate
covariates, or variables, is fairly large. Thus, as noted, direct application of the fence may encounter com-
putational difficulties. To reduce the computational difficulty, we first apply a transformation to the data
that is orthogonal to a (large) subset of the candidate variables to make them “disappear.” The SAF is then
applied to the remaining (small) subset of the candidate variables. The term “restricted” is used because
the first step of the proposed procedure involves the same transformation of the data as in REML (e.g.
Jiang,2007, p. 13); however, there is no estimation of the variance components.

Consider a linear mixed model that can be expressed as

y = Xβ + Zu + e,

whereX is a matrix of covariates whose columns are to be selected from a (large) set of candidates,
β is the corresponding regression coefficients or fixed effects,Z is a known matrix,u is a vector of
random effects, ande is a vector of errors. Writeε = Zu + e. Note that, by combining theZu with e,
the random effects have disappeared. However, typically, in longitudinal studies, the main interest is the
mean response. Although the random effects are used to model the correlations in the observations, there
is little interest in inference about the random effects themselves. This is different from some other areas
such as small area estimation (e.g.Rao,2003) in which estimation (or prediction) of random effects (or
mixed effects) is of main interest. Therefore, we focus on the marginal model, which is standard for the
generalized estimating equation (GEE) approach (e.g.Diggle and others,2002, chapter 8). Suppose that
X can be expressed asX = [X1X2], whereX1 = (xi j )16i6n, j ∈S1, andX2 = (xi j )16i6n, j ∈S2, S1 is a
subset ofS, the index set of all the candidate variables, andS2 = S \ S1. Here,S1 correspondsto the
smaller subset andS2 thelarger one. Then the model can be expressed as

y = Xβ + ε = X1β
(1) + X2β

(2) + ε,

wherey = (yi )16i6n, β = (β j ) j ∈S, β(1) = (β j ) j ∈S1, and β(2) = (β j ) j ∈S2. Let pj = rank(X j ),
j = 1,2. Let A be an × (n − p2) matrix such thatA′A = In−p2 and A′X2 = 0. It follows that
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AA ′ = PX⊥
2

= In − PX2, wherePX2 = X2(X′
2X2)

−1X′
2. Then, we havez = A′y = X̃1β1 + η, where

X̃1 = A′X1, andη = A′ε. Here, we assume, for simplicity, thatX2 is of full rank p2 (otherwise,(X′
2X2)

−1

will be replaced by the generalized inverse).
Note that, by applying the transformationA′ to the data, the matrixX2, which is typically of much

higher dimension, has disappeared from the model. Also note that E(η) = 0. Thus, one can apply the SAF
method based on the transformed dataz to the subset of candidate variables corresponding toX1 which
is usually of much lower dimension. Also note that, although the matrixA is introduced here, its explicit
form is not needed for the application of the fence method. For example, ifQM = RSS,the residual sum
of squares, then it can be shown that theQM basedonz is given by

Q̂M = y′PX⊥
2 	X1

y (2.1)

with PX⊥
2 	X1

= PX⊥
2

− PX⊥
2

X1(X′
1PX⊥

2
X1)

−1X′
1PX⊥

2
(seesupplementary appendix available atBiostatis-

ticsonline). Furthermore, for applying the SAF (Jiangand others, 2009), one can bootstrap under the full
model restricted toS1 withouthaving to know or estimateβ2. In fact, let

β̂1 = (X̃
′
1X̃1)

−1X̃
′
1z = (X′

1PX⊥
2

X1)
−1X′

1PX⊥
2

y. (2.2)

Then, the bootstrap version of̂QM is given by

Q̂∗
M = (X1β̂1 + ε∗)′PX⊥

2 	X1
(X1β̂1 + ε∗), (2.3)

whereε∗ is the vector of bootstrapped errorsε (see Section3.2for more detail).
The point is thatS1 canbe any subset of the candidate variables. Thus, by dividingS into a number

of subsets and applying the above method to every subset, a number of variables are selected from each
subset (or no variable is selected from the subset). Finally, the SAF is applied to all the variables that are
picked up from the subsets to select the final set of covariate variables.

2.2 Algorithm

A numerical algorithm for the restricted fence procedure is given below:

1. For the candidate variablesxj , 1 6 j 6 J, determine a divisionS = {1, . . . , J} = S1 ∪ . . . ∪ Sq,
whereSr , 16 r 6 q aresubsets ofS (not necessarily disjoint).

2. Let S1 = S1 andS2 = S\ S1. Apply the SAF using the measure of lack-of-fit (2.1) to select the
variables amongxj , j ∈ S1. The SAF consists of the following steps:

2.1. Estimating the parameters under the restricted full model (= {xj , j ∈ S1}).
2.2. Bootstrapping under the restricted full model; for each bootstrapped sample, select the opti-

mal model using the fence [see (A.2) of the supplementary appendix available atBiostatistics
online] for eachc among a grid 0< c1 < ∙ ∙ ∙ < cK .

2.3. For eachc among the grid, compute the frequency, over the bootstrap samples, that each can-
didate model is selected as the optimal model; compute the maximum frequency, denoted by
p∗. Note thatp∗ dependsonc.

2.4. Find a peak in the middle of the plot ofp∗ againstc; let c∗ bethec corresponding to the peak;
use the fence withc = c∗ to select the final optimal model.

3. Apply the same procedure as Step 2 toS2, . . . ,Sq.
4. Apply another SAF to the subset of variables selected in Step 2 and Step 3 (combined; considered

as the new candidate variables) to select the final variables.
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3. RESTRICTED FENCE FOR LONGITUDINAL DATA

In most longitudinal studies, the main interests are associated with the so-called mean response. For
example, how does the mean response relate to some of the covariates, such as age, sex, body mass index,
and blood pressure? how does the treatment (e.g. drug) affect the mean response? and how does the mean
response change over time? One important feature of longitudinal data is that responses collected from the
same individual over time are expected to be correlated. Ignoring such correlations may lead to incorrect
standard error calculations, confidence intervals, andp values. In fact, this has been a main reason that
mixed effects models are widely used in longitudinal data analysis. A linear mixed effects model may be
expressed as

yi = Xi β + Z i αi + εi , i = 1, . . . , n, (3.1)

wheren is the number of individuals (subjects) involved in the study;yi is the vector of responses from the
i th individual collected over time; andXi is the matrix of covariates corresponding to thei th individual.
Furthermore,β is a vector of unknown regression coefficients related to the question of main interest;Zi

is a known design matrix,αi is a vector of random effects associated with thei th individual, andεi is a
vector of additional errors. It is assumed thaty1, . . . , yn areindependent, but the components ofyi are
usuallycorrelated due to the structure of the model. It is also assumed that the random effects and errors
have mean zero. Under the normality assumption and a parametric model for the covariance structure of
the data, the model may be fitted by ML or REML. However, this approach requires strong parametric
modeling and hence may suffer from model misspecification. An alternative approach is the GEE method
( Liang and Zeger, 1986; also seeDiggleand others,2002), which does not have to specify the covariance
structure.

While there is an extensive literature on modeling the correlation structures, parameter estimation, and
inference about the mean response (e.g.Diggle and others, 2002;Jiang,2007), longitudinal model selec-
tion has received much less attention. In particular, there is a lack of theoretical development regarding
model selection criteria due to the nonconventional features of the longitudinal data (see
Jiangand others,2008). Although a practioners may employ a number of heuristic selection criteria,
such as the AIC (Akaike, 1973), BIC (Schwarz, 1978), HQ (Hannan and Quinn, 1979), and CAIC (or
consistent AIC; seeBozdogan, 1987), the theoretical bases for these methods have not been justified in
the longitudinal setting. In fact, our simulation results (see below) show that some of these methods may
perform poorly in selecting parsimonious models for longitudinal studies. On the other hand, the fence
methods (Jiangand others, 2008) were developed for dealing with nonconventional model selection prob-
lems. In particular, the restricted fence method introduced in Section2 applies naturally to longitudinal
variable selection problems. Such a problem is motivated by practical problems of longitudinal studies,
which often involve many potential variables.

The measure of lack-of-fit,QM , for the restricted fence is chosen as the RSS as in Section2. The
measure is computationally easy to operate, which is very important for high-dimensional model selection
problems. Note that an explicit expression ofQ̂M is given by (2.1). Furthermore, in our simulation study,
restricted fence based on RSS performs very well as compared with other methods (see below for further
discussion).

3.1 Simulation study

We consider the following linear mixed model:yi j = x′
i j β + υi + εi j , i = 1, . . . , n; j = 1, . . . ,T , where

i represents thei th subject, andj the j th time point;υi ∼ N(0,σ 2
v ), εi j ∼ N(0,σ 2

e ), andυi sandεi j sare
independent.

The data were simulated to mimic a real data set regarding a bone turnover study. The data for the
study were collected over 3 time points (within 12 months study period). The participants were women
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(18–40 years of age) in 2 dietary groups, vegan, or omnivore. The outcome of interest was a marker of
bone formation (Osteocalcin), measured over time with respect to dietary groups. The covariates including
30 variables. See supplementary appendix available atBiostatisticsonline for a list of these variables.

As measurements were collected at 3 time points, we haveT = 3. We consider 3 cases:n = 50,n =
100, andn = 150, wheren is the number of subjects. In the real data set, there were 48 participants, 24
of them are vegan and the others are omnivore. Thus, we set up the simulations in a similar way so that
half of the subjects are in each dietary group. The continuous covariates are generated under the normal
distribution with the mean and standard deviation (SD) equal to those obtained from the real data set with
respect to time and group categories, disregarding the missing values.

The true model used for the simulation includes the following variables: time, dietary group, height,
N-telopeptide, and crude calcium balance. The true regression coefficients areβ = (1,1,1,1,0.05,0.25,
0.001)′, corresponding to the intercept, 2 time-point indicators, the dietary indicator, and the 3 continuous
variables. These coefficients are set to be similar to those obtained from the real data under the full model
except for the coefficient of crude calcium balance. The latter variable is known to be associated with the
bone metabolism (Anderson and Garner, 1995). Yet, it is not a significant variable according to the real-
data analysis in that its coefficient under the full model was quite small. Thus, in the simulation, we bring
this variable into the true model (due to its practical interest) by increasing the value of its coefficient to
0.001. The variances of the subject-specific random effects and random errors,σ 2

v andσ 2
e areset to be 1,

which is close to their estimates from the real data. The number of bootstrap samples for the restricted
fence is 100. A total of 100 simulations are run under each sample size.

For the restricted fence, we divide all potential predictors into 4 groups according to biological consid-
erations. The variable groups are Group A-1: 1–8, Group A-2: 9–15, Group A-3: 16–22, and Group A-4:
23–30, where the variable numbers correspond to those listed in Section A.3 of the supplementary ap-
pendix available atBiostatisticsonline. The true variables correspond to the numbers 1, 2, 3, 4, 9, 10, and
27 on the list. We then apply the SAF procedure to each group based on the transformed data (see Section
2). The results are reported in Table1. Same data comparisons are made with 4 of the traditional infor-
mation criteria, AIC, BIC, HQ, and CAIC. Due to the high dimensional and complex data structure, the
forward/backward (F/B) procedure ofBroman and Speed(2002) is applied, where the forward selection
stops when 50% of the candidate variables are selected, which is then followed by the backward elimina-
tion. We then apply AIC, BIC, HQ, and CAIC to the sequence of models generated by the F/B procedure
and choose the model with minimum AIC, BIC, HQ, or CAIC, respectively, as the optimal model.

In addition, there have been several shrinkage variable selection methods, following the Lasso
(Tibshirani, 1996). We make the same data comparisons of our method with 2 of the most popular shrink-
age methods, the adaptive Lasso (Zou,2006) and the smoothly clipped absolute deviation method (SCAD;
Fan and Li, 2001; also seeFan and Lv, 2008). It has been shown (Zou, 2006) that the Lasso is not con-
sistent for model selection while the adaptive Lasso is. Therefore, our comparison focuses on the latter. It
should also be pointed out that there have been recent work on simultaneous selection of fixed and random
effects in linear mixed effects models using the shrinkage methods (Bondell and others,2010;Ibrahim
and others, 2011). However, because our focus is selection of the fixed covariates only, it seems more fair
to compare with the shrinkage methods that focus on the fixed covariates, namely the adaptive Lasso and
SCAD, even though the latter use regression-based measures of lack-of-fit. Interestingly, all the methods
being compared, including our method (see the last paragraph before Section3.1), AIC, BIC, HQ, and
CAIC, use regression-based measures of lack-of-fit.

Table1 summarizes the performance of the restricted fence comparing with those of the (F/B) BIC,
CAIC, HQ, and AIC procedures as well as the adaptive Lasso and SCAD. For the adaptive Lasso, we
use the function adalasso() from the parcor package in R, with the regularization parameter chosen by the
cross-validation (which is the default method). For SCAD, we use the function GLMvanISISscad() in the
SIS package in R, with the regularization parameter chosen by the BIC method. In Table1, RF, AIC, BIC,
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Table 1. Empirical results. See Section3.1 for notation

n Summary RF BIC CAIC HQ AIC ALASSO SCAD

50 TP 53 37 33 28 0 15 0
UF 26 46 39 39 14 32 29
OF 21 17 28 33 86 53 71
MC 6.73 6.54 6.61 6.61 6.86 6.66 6.63
SD (0.46) (0.50) (0.49) (0.49) (0.34) (0.52) (0.80)

MIC 0.34 0.39 0.68 0.77 4.28 1.84 1.30
SD (0.60) (0.69) (0.88) (0.88) (1.93) (1.98) (0.48)

100 TP 85 65 54 47 0 30 0
UF 5 7 4 3 1 2 44
OF 10 28 42 50 99 68 56
MC 6.94 6.92 6.96 6.97 6.99 6.98 6.28
SD (0.27) (0.30) (0.19) (0.17) (0.10) (0.14) (1.05)

MIC 0.12 0.33 0.52 0.72 4.70 1.76 6.72
SD (0.38) (0.53) (0.65) (0.87) (2.03) (2.05) (0.58)

150 TP 96 82 69 56 0 37 0
UF 3 0 0 0 2 1 86
OF 1 18 31 44 98 62 14
MC 6.97 7.00 7.00 7.00 6.98 6.99 5.39
SD (0.17) (0.00) (0.00) (0.00) (0.14) (0.10) (1.43)

MIC 0.01 0.22 0.38 0.58 4.14 1.45 10.58
SD (0.10) (0.50) (0.63) (0.76) (2.01) (1.85) (0.93)

RF, restricted fence procedure; BIC, the F/B BIC procedure; CAIC, the F/B CAIC procedure; HQ, the F/B HQ procedure; AIC, the
F/B AIC procedure; ALASSO, the adaptive Lasso procedure; SCAD, the SCAD procedure.

HQ,CAIC, and ALASSO stand for the restricted fence, the F/B AIC, BIC, HQ, CAIC, and adaptive Lasso,
respectively. Note that the true model includes 7 variables. Here, true positive (TP) means identifying
exactly the true variables; underfitting (UF) means that at least one true variable is missing in the selected
model (which may also include extraneous variables); overfitting (OF) means that the selected model
includes all the true variables plus at least one extraneous variable; TP, UF, and OF are in percentages of
empirical probabilities; and MC (MIC) is the empirical mean number of correctly (incorrectly) selected
variables. The corresponding empirical SD are in the parentheses. Overall, the restricted fence seems to
outperform, significantly, all the other procedures, both in terms of the (empirical) probability of correct
selection and in terms of the (empirical) mean and SD of the number of incorrectly selected variables.
Some plots ofp∗ vs.c areshown in Figures1 and2 as illustrations.

3.2 Wild bootstrapping

As mentioned, a key step of the restricted fence is bootstrapping. This is relatively straightforward if the
random effects are not present, that is, if the components ofε in Section2.1are i.i.d. In fact, in this case,
all one needs to do is to (i) obtain an estimate of the variance ofεi underthe full model, say,̂σ 2

f ; and (ii)
bootstrap the components ofε∗ independentlyfrom theN(0, σ̂ 2

f ) distribution. However, under the mixed
linear model (3.1), the situation is more complicated.

Ideally, the bootstrapping should be done under the full model of (3.1). To do so, one needs to (a)
estimate the parameters, which include the fixed effectsβ and all the variance components associated
with the distributions ofαi andεi ; (b) draw samplesα∗

i , ε∗
i , i = 1, . . . , n, from the assumed distributions
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Fig. 1. Plots from the group stage of the restricted fence in one simulation. The fourp∗ vs.c plots correspond to the
4 bins of variables. Five variables are picked up from the upper left plot; 1 variable is selected from the upper right
plot; no variable is selected from the lower left plot; and one more variable is picked from the lower right plot.

Fig. 2. Plot ofp∗ vs.c from the final stage of the restricted fence for the same simulation (as the one in Fig.1). Seven
variables are selected from this plot.

of αi andεi , respectively, treating the estimated variance components as the true parameters; and (c) use
y∗

i = Xf,i β̂f + Zi α
∗
i + ε∗

i , i = 1, . . . ,n, to generate the bootstrap samples, whereXf,i is the covariate
matrix under the full model, and̂βf the estimator ofβ under the full model. We call such a procedure
linear mixed model bootstrapping.

However, there are practical reasons that bootstrapping under the full linear mixed model as above
may not be robust. For example, the standard procedures of fitting the linear mixed model (3.1), which
are ML and REML, involve numerically solving nonlinear maximization problems or equations. Although
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theseprocedures are available in standard software packages, such as SAS, S-plus and R, nonconvergence,
false convergence, and convergence to local maximums often occur in practice. In such cases, the variance
components under the full linear mixed model may be poorly estimated, which results in poor bootstrap
approximations, as in step (b) above. This is confirmed, for example, in our simulation studies in which
we found that the restricted fence performs significantly better using the wild bootstrapping method,
described below, than using the linear mixed model boostrapping.

The “wild bootstrap” was proposed byLiu (1988) following a suggestion ofWu (1986). Also see
Beran(1986). Suppose that we are interested in estimating the mean function of the data, which are
independent but not identically distributed. Suppose that we apply the classical bootstrap based on i.i.d.
samples from the empirical population to estimate the sampling distribution of the estimator. Can the
result still be asymptotically correct?Liu (1988) showed that the answer is yes even though the classical
bootstrap does not seem intuitively appropriate here for the simple reason that the original data are not
i.i.d. More specifically, it was shown that this wild bootstrap not only captures the first-order limit but also
retains the second-order asymptotic properties. This suggests that the wild bootstrap is robust, at least to
some extent, against distributional misspecifications.

In our bootstrapping procedure, we first estimate the fixed effectsβ1 underthe restricted full model.
This is naturally done by minimizing theQM that is the RSS. The estimator is given by (2.2) withX1 =
Xf,1 andX2 = Xf,2 andis denoted byβ̂f,1, whereXf, j is the full X j , j = 1,2. Thus,Xf,1 corresponds
to the restricted full model, which has much fewer covariates than the full model. Here, for simplicity, we
assume thatX′

f,1PX⊥
f,2

Xf,1 is nonsingular. For example, in our simulation study, the full model ofX has

30 fixed covariates, while the full model ofX1 haseither 7 or 8 fixed covariates. Next, we write (3.1) as
y = Xβ + ζ , wherey = (yi )16i6m, X = (Xi )16i6m, andζ represents the rest of the model involving
the random effects and errors. We then assume a “ working distribution” for the error vectorζ such that
under the working distribution, the components ofζ are independent and distributed asN(0, σ2), where
σ 2 is an unknown variance that is estimated by the standard unbiased estimator,σ̂ 2 = Q̂Mf /(n − pf) =
y′PX⊥

f,2	Xf,1
y/(n− pf), whereQ̂M is given by (2.1), andpf = pf,1+ pf,2 with pf, j = rank(Xf, j ), j = 1,2

(seesupplementary appendix available atBiostatisticsonline). Givenσ̂ 2, we generateε∗ by ε∗ = σ̂ ξ ,
where the components ofξ are generated independently from theN(0,1) distribution. We then use (2.3)
to computeQ̂∗

M , the bootstrap version of̂QM for the SAF in selecting the covariates forX1.
In a way, our case is similar to what Liu considered. The underlying model is a linear mixed model, but

we are bootstrapping under a regression model that has the same mean function asymptotically. In other
words, the bootstrap draws samples that have the correct mean vector but potentially incorrect covariance
matrix. Thus, we refer our bootstrap procedure also as wild bootstrap followingLiu (1988). By using
similar arguments as the latter, it can be shown that our wild bootstrap captures the first-order limit, which
is what matters for the consistency of model selection.

There is also a similarity between our wild bootstrap procedure and the GEE (Liang and Zeger,1986).
In GEE, the means of the responses are correctly specified but the covariance matrices may be misspec-
ified. Nevertheless, the GEE estimator is consistent, even thought it may not be efficient. In our wild
bootstrap procedure, the bootstrappedQ̂M , that is, (2.3), depends onXf,1β̂f,1 + ε∗. The first term is cor-
rectly specified. This is because the LS estimator ofβf,1, which is a special GEE estimator, is consistent.
On the other hand, the covariance matrix ofε∗ maybe misspecified, but this does not affect the consis-
tency property of the model selection. Note that only selection of the fixed covariates are considered here.
By a very similar argument as that inJiangand others(2008) (orJiangand others, 2009), the consistency
property of the restricted fence using the wild bootstrap can be rigorously established. For the most part,
the consistency of fence rests on a single requirement, that is, the values ofQ̂M arewell separated be-
tween correct and incorrect models. It can be shown that theQ̂M given by (2.1) has the latter property. The
technical conditions and proof are omitted (see supplementary appendix available atBiostatisticsonline
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for some empirical results). The results further support our conclusion that when the parameter estimation
is unreliable due to computational instability, the simple and much more stable wild bootstrap may have
an advantage.

3.3 A real-data example

A clinical trial, Soy Isoflavones for Reducing Bone Loss (SIRBL), was conducted at multicenters (Iowa
State University and University of California at Davis-UCD). Only part of the data collected at UCD will
be analyzed here. The data include 56 healthy postmenopausal women (45–65 years of age) as part of
a randomized, double-blind, and placebo-controlled study. The data were collected over 3 time points—
baseline, after 6 and 12 months. One problem of interest is to model the Cytokines (IL1BBLLA, TNFA-
BLLA, and IL6BLLA)—inflammatory markers—over time on gene expression for IFNb and cFos along
with other variables listed in Section A.3 of the supplementary appendix available atBiostatisticsonline.

We are interested in finding a subset of relevant variables/covariates that contribute to the variation
of Cytokines. Here, we only report the results of data analysis for IL1BBLLA. The covariate variables
are grouped into 4 groups according to biological interest. More specifically, one of the authors worked
closely with an expert scientist in the field, Dr Marta Van Loan of the USDA Western Human Nutrition
Research Center located at UCD to determine what variables should be grouped together and finally came
up with the grouping (see Section A.3 of the supplementary appendix available atBiostatisticsonline for
details). The restricted fence method is then applied in very much the same way as in Section3.1. The
results are compared with other procedures, reported in Table2.

The main objective of the study was to examine whether Soy Isoflavones treatment affects the bone
metabolism. This treatment effect is selected by the restricted fence, AIC and SCAD, but not by the
other methods. The Weight variable was thought to be relevant and is picked up by AIC and HQ but
not by other procedures; however, the BMI variable, which is a function of weight and height, is picked
up by the restricted fence and SCAD. As also seen in the same table, BMD for lumbar and spine mea-
sures (LSTBMD) is picked up by the restricted fence but not by any other procedure. Apparently, in this
analysis, BIC, CAIC, HQ, and the adaptive Lasso have overpenalized; as a result, their optimal models
do not pick up some relevant covariates, such as BMD and BMC (adaptive Lasso did not pick up any
of the variables). As for AIC, it is able to pick up femoral neck area (FNArea) and lumbar spine total
area (LSTArea), which are related to bone areal size (i.e. prefix-Area) and considered relevant. However,
after consulting with the expert scientist in this field, we are confirmed that BMD and BMC are more
important variables than area measures in this case. Thus, the results of the restricted fence data analysis

Table 2. Empirical results under stronger signals. The true model includes the same7 variables as in
Table 1. n= 100. Notations are the same as in Table1. The results are exactly the same under the2

grouping strategies, A andB

RF BIC CAIC HQ AIC ALASSO SCAD

TP 100 70 57 49 0 62 0
UF 0 0 0 0 1 0 100
OF 0 30 43 51 99 38 0
MC 7.00 7.00 7.00 7.00 6.99 7.00 4.00
SD (0.00) (0.00) (0.00) (0.00) (0.10) (0.00) (0.00)
MIC 0.00 0.33 0.52 0.71 4.70 0.92 6.24
SD (0.00) (0.53) (0.65) (0.88) (2.03) (1.60) (0.69)

RF, restricted fence procedure; BIC, the F/B BIC procedure; CAIC, the F/B CAIC procedure; HQ, the F/B HQ procedure; AIC, the
F/B AIC procedure; ALASSO, the adaptive Lasso procedure; SCAD, the SCAD procedure.
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aremore clinically relevant. Although SCAD has selected the most variables, it has missed the important
variable LSTBMD. As for the total body area (WBodArea) that is uniquely picked up by SCAD, the vari-
able is relatively less important, compared with the BMD and BMC, as noted. Our simulation study (see
Tables1 and ) has suggested that SCAD has the tendency of missing important variables as well as select-
ing extraneous variables.

4. DISCUSSION

Therestricted fence begins with the division of the candidate variables into several groups (see Step 1 of
Section2.2). We have indicated that, in practice, the grouping should be based on biological information
(see Sections3.1,3.3). Nevertheless, there is concern on sensitivity of the variable selection result to the
grouping. Suppose that the biological information is ignored in the grouping. Will the result be dramati-
cally different? We carry out additional simulation studies to investigate this problem. Recall that, in the
simulation study of Section3.1, the candidate variables were divided into 4 Groups, A-1–A-4, according
to biological considerations. Call this grouping Strategy A. In our additional simulation study, we ignore
the biological consideration (which is something that we would not recommend in practice). Instead, we
consider a different grouping strategy, called grouping Strategy B, by shuffling the variable numbers ran-
domly (keeping 3 and 4 together, which are the time-point indicators—it does not make sense to separate
them). We then divide the variables into 4 groups, with the same numbers of variables in the groups as
Strategy A (i.e. 8, 7, 7, 8). The new groups are Group B-1: 5, 8, 16, 18, 22, 23, 24, 28; Group B-2: 1, 2,
9, 10, 19, 20, 21; Group B-3: 3, 4, 13, 14, 17, 29, 30; and Group B-4: 6, 7, 11, 12, 15, 25, 26, 27. We then
run the simulations based on the new grouping. The results for the restricted fence corresponding to the
partn = 100 in Table1 are TP: 77; UF: 2; OF: 21; MC: 6.76 (0.49); MIC: 0.02 (0.14). (The correspond-
ing results for the competing methods do not change, of course.) Comparing with Table1, it is seen that
grouping makes some difference, which suggests that information such as biological interest may help.
On the other hand, even with the completely randomized grouping, the results have not changed dramat-
ically; in particular, the restricted fence still outperforms the competing methods. This suggests that the
restricted fence is somewhat robust with respect to the grouping.

The robustness of the restricted fence can be argued theoretically in large sample. Because of the
consistency of the restricted fence (Jiangand others,2008), in large sample, the procedure will select the
correct variables (and nothing else) with high probability regardless of the grouping. Equivalently, one
may argue in terms of “signal consistency” (Jiangand others, 2011), which is more appropriate in cases
where the number of variables is comparable to the sample size. For the most part, signal consistency
means that, as the signals (i.e. the absolute values of the true regression coefficients) increase (but with
the sample size fixed), the probability of identifying the true variables (and nothing else) goes to one. As
argued inJiangand others(2011), it can be shown that the restricted fence is signal-consistent regardless
of the grouping.

To verify the signal consistency of the restricted fence empirically, we consider again the 2 different
grouping strategies. We run simulations withn = 100 and the following increased signals for the true
variables: 1, 1, 1, 1, 0.5, 0.5, and 0.01 (in other words, the first 4 coefficients are unchanged, the fifth and
seventh are 10 times as strong, and the sixth is twice as strong). The simulation results are presented in
Table3. In particular, the results for the restricted fence are exactly the same (which are perfect) under the
2 grouping strategies, A and B, indicating signal consistency of the restricted fence as aforementioned.
Interestingly, the results also seem to suggest that the competing methods improve at a much slower rate
as the signals increase, compared to the restricted fence.

It should be noted that consistency or signal consistency are theoretical properties indicating what to
expect in the “ideal” situations. In the practical and most likely less ideal situations, a careful design for the
grouping could make a difference as is shown. In short, if there is knowledge about the candidate variables,
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Table 3. ModelingIL1BBLLA

Variable RF BIC CAIC HQ AIC ALASSO SCAD

Soy treatment × × ×
Weight × ×
BMI × ×
WaistCir × × ×
HipBMD ×
LSTBMC × ×
LSTBMD ×
TibTrBMC ×
TibTrBMD × × × × × ×
FNArea ×
LSTArea ×
WBodArea ×

RF, restricted fence procedure; BIC, the F/B BIC procedure; CAIC, the F/B CAIC procedure; HQ, the F/B HQ procedure; AIC,
the F/B AIC procedure; ALASSO, the adaptive Lasso procedure; SCAD, the SCAD procedure. The× indicates variable selected.
Variables not listed were not selected by any of the methods.

suchas biological interests, the knowledge should be used in the grouping. This was illustrated in Section
3.3with a data example. For the most part, we recommend that the (bio)statistician work closely with the
expert scientist(s) in the field to determine what grouping strategy is reasonable. It is also important to
take into account the relationships between the variables (see Section A.4 of the supplementary appendix
available atBiostatisticsonline). Keep in mind that, by definition (see Step 1 of Section2.2), the groups
need not be disjoint. Finally, for computational efficiency, the group sizes should be kept relatively small,
typically 5–10 variables in each group if possible.

See Section A.4 of the supplementary appendix available at Biostatistics online for further simulation
results that show another aspect of robustness of the restricted fence to “bad” groupings.

Finally, there is interest in comparing the restricted fence with the adaptive fence (Jiangand others,
2008) or SAF (Jiangand others,2009). Although the latter are not computationally feasibles for the sim-
ulation setting considered in Section 3.1, which has 30 candidate variables, we have provided limited
simulation results for a (much) lower dimensional problem. The comparison is in terms of both the selec-
tion performance and the computational costs. See Section A.5 of the supplementary appendix available
at Biostatistics online.

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available athttp://biostatistics.oxfordjournals.org.
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