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Throughout this Supplementary Material, the paper, “The E-MS Algorithm: Model

Selection with Incomplete Data” by Jiang, Nguyen & Rao, is referred to as JNR.

A.1 Convergence and consistency of E-MS

In this section, we provide detailed results regarding the convergence and consistency

of E-MS, reported in Section 4 of JNR, and their extensions.

First we would like to point out a key idea for the proof of the (numerical) convergence,

which is based on a well-known result in numerical analysis,known as theglobal conver-

gence theorem (GCT). First introduce a few terms in numerical analysis. Analgorithm is

defined as a map,a, that assigns to every pointx ∈ X a subseta(x) ⊂ X. In particular,

a(x) may consist of a single point, in which case the definition of amap is consistent the

traditional concept. To see an example, suppose thata(x) is defined as the solution(s),y,

to the equationg(x, y) = 0. Givenx, if the solution is unique, thena(x) is a single point;

if the solutions exist but are not unique, thena(x) is a subset; and, if the solution does not

exist, thena(x) = ∅. Operated iteratively, the algorithm initiated atx0 ∈ X would generate

a sequence,xk, k = 0, 1, 2, . . . , defined by

xk+1 ∈ a(xk). (A.1)

The mapa is said to be closed atx ∈ X if xk → x, xk ∈ X andyk → y, yk ∈ a(xk) imply

y ∈ a(x). The algorithm defined bya is said to converge globally if, with any initial point

x0, the sequencexk, k = 1, 2, . . . converges to the same pointx∗ ∈ X.

Global Convergence Theorem (e.g., Luenberger 1984). Suppose that the sequencexk

is generated by an algorithma via (A.1), and there is a continuous function,g, such that
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the following conditions (a)–(c) hold. Then, the limit of any convergent subsequence ofxk

must be a solution to the following optimization problem:

minimize g(x) subject to x ∈ X. (A.2)

(a) all points ofxk are contained in a compact subsetS ⊂ X; (b) a is closed at anyx that is

not a solution to (A.2); (c) ifx is not a solution to (A.2), theng(y) < g(x) for all y ∈ a(x),

and ifx is a solution to (A.2), theng(y) ≤ g(x) for all y ∈ a(x).

The GCT was used in the proof of the convergence of the E-M algorithm (Wu 1983).

Also see, for example, Jiang (2000) for another applicationof the GCT. In Wu (1983), the

inequalities in (c) are reversed because, therein, the author considered maximum likelihood.

Clearly, this is equivalent to our version of (c) if, instead, (A.2) is considered. Among the

three conditions, the key is to show (c), because the rest of the conditions are relatively easy

to verify, or reasonable to assume (such as the compactness of the parameter/model space).

Thus, we will focus on condition (c). Also note that, typically, the strict inequality,<, in (c)

holds under some regularity conditions that rule out some trivial cases, once the inequality

≤ or, in other words, the monotonic property ofg, is established. It should also be noted

that, in numerical analysis, convergence of an algorithm isreached if the distance between

the current point and the updated one is less than a thresholdthat is set up in advance (e.g.,

10−6). However, if the model space is discrete, the threshold condition is met if and only

if the updated model is identical to the current model; and weuse this as the definition of

convergence in an iterative model selection procedure.

To verify the key condition (c) of the GCT, it essentially amounts to show that there is

a function,g, so thatg(M (t+1), θ(t+1)) ≤ g(M (t), θ(t)). For example, in the E-M algorithm,

g is the negative log-likelihood, which satisfiesg(θ(t+1)) ≤ g(θ(t)). But now we have to

find ag that involves not justθ, but alsoM . Recall the observed version of (10) of JNR,

introduced three lines below (12) of JNR, whereQo is some observed version ofQ. A key

condition for Theorem 1 of JNR is assumptionA3. This condition may be interpreted as

that the expected difference in the measure of lack-of-fit under the correct model is no more
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than that under an incorrect model. We illustrate with some examples (the numbering of

the examples follows the sequence of JNR).

Example 4 (negative log-likelihood). ConsiderQ(M, θ, Y ) = − log fM,θ(Y ) and define

Qo(M, θ, yo) = − log fM,θ(yo), wherefM,θ(y) and fM,θ(yo) are the pdfs ofY andYo,

respectively, with respect to someσ-finite measureν, underM and θ. Then, we have

Q(M, θ, Y ) − Qo(M, θ, yo) = − log{fM,θ(Y )/fM,θ(yo)} = − log fM,θ(Ym|yo), whereYm

denotes the vector of missing data. It follows that

E{Q(M̃, θ̃, Y ) −Qo(M̃, θ̃, yo)|yo,M, θ} − E{Q(M, θ, Y ) −Qo(M, θ, yo)|yo,M, θ}

=
∫

{log fM,θ(ym|yo)}fM,θ(ym|yo)dν −
∫

{log fM̃,θ̃(ym|yo)}fM,θ(ym|yo)dν

= −
∫

log{fM̃,θ̃(ym|yo)/fM,θ(ym|yo)}fM,θ(ym|yo)dν

≥ − log
∫

{fM̃,θ̃(ym|yo)/fM,θ(ym|yo)}fM,θ(ym|yo)dν = 0,

using Jensen’s inequality. Thus,A3 of JNR is satisfied.

Example 5. Consider selecting the covariates in a linear regression,Yi = x′iβ + ǫi, i =

1, . . . , n, where the errorsǫi are independent with mean0 and varianceσ2. The components

of xi are subject to selection, withβ being the corresponding vector of regression coeffi-

cients. Assume, for simplicity, thatσ2 is known, and that noxi’s are missing. Thus, we

can treat thexi’s as fixed, and drop them from the condition in the conditional expectation.

Here, a modelM corresponds to a set of specified covariates,x, andθ = β. Suppose that

y1, , . . . , ym are observed, whileym+1, . . . , yn are missing. As in Example 1, we consider

MAR for simplicity. LetQ(M, θ, y) = Q(x, β, y) =
∑m

i=1(yi − x′iβ)2 + δ0
∑n

i=m+1(yi −

x′iβ)2, whereδ0 is positive andF(yo) measurable, and, natually, considerQo(x, β, yo) =
∑m

i=1(yi − x′iβ)2. Then, we haveE{Q(x̃, β̃, Y )|yo, x, β} =
∑m

i=1(yi − x̃′iβ̃)2 + δ0{(n −

m)σ2 +
∑n

i=m+1(x
′
iβ − x̃′iβ̃)2}. Thus, we haveE{Q(x̃, β̃, Y ) − Qo(x̃, β̃, yo)|yo, x, β} =

δ0{(n − m)σ2 +
∑n

i=m+1(x
′
iβ − x̃′iβ̃)2}, henceE{Q(x, β, Y ) − Qo(x, β, yo)|yo, x, β} =

δ0(n−m)σ2. It follows thatA3 of JNR is satisfied.

Proof of Theorem 1:

We verify conditions (a)–(c) of GCT. Note that herex = ψ, andX = Ψ; the algorithm
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a is defined below (12) and repeated inA4 of JNR.

Condition (a) clearly holds underA1.

For condition (b), let̃ψ(t) ∈ a(ψ(t)). Suppose thatψ(t) → ψ0 andψ̃(t) → ψ̃0, ast→ ∞.

We know that, for anyψ ∈ Ψ, we have

E{Q(ψ̃(t), Y )|yo, ψ
(t)} + p(M̃ (t)) ≤ E{Q(ψ, Y )|yo, ψ

(t)} + p(M) (A.3)

[definition ofψ̃(t)]. On the other hand, whent is large, we haveM (t) = M0 andM̃ (t) = M̃0.

This is becauseM is a discrete space, i.e., the ID numbers of the candidate models, such as

1, 2, . . . , K. Thus, whent is large, the left side of (A.3) is equal to

E{Q(ψ̃0, Y )|yo, ψ0} + p(M̃0) + E{Q(ψ̃0, Y )|yo,M0, θ
(t)} − E{Q(ψ̃0, Y )|yo,M0, θ0}

+E{Q(M̃0, θ̃
(t), Y ) −Q(M̃0, θ̃0, Y )|yo,M0, θ

(t)}.

The last two differences of the above expression go to zero byA2. On the other hand, when

t is large, the right side of (A.3) is equal to

E{Q(ψ, Y )|yo, ψ0} + p(M) + E{Q(ψ, Y )|yo,M0, θ
(t)} − E{Q(ψ, Y )|yo,M0, θ0}.

Again, the last difference of the above expression goes to zero by A2. Thus, by letting

t→ ∞ on both sides of (A.3), we getE{Q(ψ̃0, Y )|yo, ψ0}+p(M̃0) ≤ E{Q(ψ, Y )|yo, ψ0}+

p(M), for anyψ ∈ Ψ. Therefore, by the definition ofa, we haveψ̃0 ∈ a(ψ0).

For condition (c), we haveg(M (t+1), θ(t+1), yo) =

= E{Q(M (t+1), θ(t+1), Y ) + p(M (t+1))|yo,M
(t), θ(t)}

+E{Qo(M
(t+1), θ(t+1), yo) −Q(M (t+1), θ(t+1), Y )|yo,M

(t), θ(t)}

≤ E{Q(M (t), θ(t), Y ) + p(M (t))|yo,M
(t), θ(t)}

+E{Qo(M
(t), θ(t), yo) −Q(M (t), θ(t), Y )|yo,M

(t), θ(t)}

= g(M (t), θ(t), yo). The inequality above is due toA3 of JNR and the definition ofM (t+1),

θ(t+1). Also note thatM (t) andθ(t) are functions ofyo, conditional on which,M (t), θ(t) are
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considered as fixed models and parameters for everyt. This proves the second part of (c).

As for the first part, ifψ1 ∈ Ψ \ Ψ0, then, byA4 of JNR,ψ1 /∈ Ψ1. Let ψ̃1 ∈ a(ψ1). Be-

causeψ1 /∈ a(ψ1), we haveE{Q(ψ1, Y )|yo, ψ1}+ p(M1) > minψ∈Ψ[E{Q(ψ, Y )|yo, ψ1}+

p(M)] = E{Q(ψ̃1, Y )|yo, ψ1} + p(M̃1). Thus, combined withA3 of JNR, we have

g(ψ̃1, yo) = Qo(ψ̃1, yo) + p(M̃1)

= E{Q(ψ̃1, Y )|yo, ψ1} + p(M̃1) + E{Qo(ψ̃1, yo) −Q(ψ̃1, Y )|yo, ψ1}

< E{Q(ψ1, Y )|yo, ψ1} + p(M1) + E{Qo(ψ1, yo) −Q(ψ1, Y )|yo, ψ1}

= Qo(ψ1, yo) + p(M1)

= g(ψ1, yo).

Thus, we have verified conditions (a)–(c) of GCT. Furthermore, byA5, the solution to

minψ∈Ψ g(ψ, yo) is unique; therefore, the limit of any convergent subsequence ofψ(t), t =

0, 1, 2, . . . is the same, hence the entire sequence converges and the limit does not depend

on the initial point. In other words,ψ(t), t = 0, 1, 2, . . . converges globally.

Before proving Theorem 2, we interpret the additional assumptions,A6 andA7 of JNR.

A nice feature of the latter is that they are very much the sameas those required for the

consistency of the GIC with the complete data (e.g., Jiang & Rao 2003). Intuitively, as-

sumptionA6 states that, w.p.→ 1, an underfit model has a larger measure of lack-of-fit,

and the difference in the measure of lack-of-fit is of higher order than that in the penalty;

assumptionA7 states that, w.p.→ 1, the difference in the penalty between an overfit model

and the optimal model dominates the that in the measure of lack-of-fit between these two

models. These assumptions, of course, make sense. Again, weillustrate with an example.

Example 5 (continued). In this case, we haveQo(M, θ, yo) = Qo(x, β, yo) = |yo −

Xoβ|
2, whereyo = (yi)1≤i≤m andXo = (x′i)1≤i≤m, andp(M) = λndim(β). Let xj , j =

1, . . . , p be the candidatex variables. We make the classical assumptions thatp is bounded,

and that the true variables are a subset of the candidate variables. LetMopt = {1 ≤ j ≤

p, βf,j 6= 0}, whereβf,j is thejth true coefficient under the full model. Then,Mopt is the
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optimal model. A modelM corresponds to a subset of{1, . . . , p};M ∈ Mu iff Mopt 6⊆M ,

andM ∈ Mo iff Mopt ⊂M (i.e.,Mopt ⊆M,Mopt 6= M).

If M ∈ Mu, we haveQo(M,Yo) = Y ′
oPX⊥

o
Yo = |a|2 + 2a′ǫ + ǫ′PX⊥

o
ǫ, wherea =

PX⊥
o
Xo,optβopt, with Xo,opt andβopt being theXo corresponding toMopt and the trueβ

corresponding toXo,opt, respectively. On the other hand, we haveQo(Mopt, θopt, Yo) =

ǫ′ǫ = ǫ′PX⊥
o
ǫ + ǫ′PXoǫ. Thus,Qo(M,Yo) > Qo(Mopt, θopt, Yo) iff |a|2 + 2a′ǫ > ǫ′PXoǫ.

However, it is easy to show thata′ǫ = OP(|a|) andǫ′PXoǫ = OP(r) with r = rank(Xo).

Thus, provided that|a| → ∞ asn→ ∞, A6 of JNR is is satisfied.

If M ∈ Mo, thenL(Xo,opt) ⊂ L(Xo), whereL(H) denotes the linear space spanned

by the columns of matrixH, and∆ = dim(β) − dim(βopt) > 0, whereβ corresponds to

Xo. It follows thatPXo − PXo,opt is a projection matrix. Thus, we haveQo(Mopt, Yo) −

Qo(M,Yo) = Y ′
o(PX⊥

o,opt
− PX⊥

o
)Yo = ǫ′(PX⊥

o,opt
− PX⊥

o
)ǫ = ǫ′(PXo − PXo,opt)ǫ = σ2χ∆,

whereχ2
∆ has theχ2 distribution with∆ degrees of freedom (e.g., Jiang 2007, p. 238). It

follows thatA7 of JNR is satisfies as long asλn → ∞, asn→ ∞.

Proof of Theorem 2:

Let (M0, θ0) denote the limit of the E-MS convergence. According to GCT, and the

proof of Theorem 1,(M0, θ0) must be a minimizer ofg(M, θ, yo). Defineg(M, yo) =

infθ∈ΘM
g(M, θ, yo). Then, it is easy to show thatg(M0, θ0, yo) = g(M0, yo).

Consider the event{M0 = M}. If M ∈ Mu, by A6 of JNR, we have

g(M0, θ0, Yo) − g(Mopt, θopt, Yo)

= g(M0, Yo) − g(Mopt, θopt, Yo)

= Qo(M0, Yo) + p(M0) −Qo(Mopt, θopt, Yo) − p(Mopt)

= {Qo(M0, Yo) −Qo(Mopt, θopt, Yo)}

{

1 +
p(M0) − p(Mopt)

Qo(M0, Yo) −Qo(Mopt, θopt, Yo)

}

= {Qo(M,Yo) −Qo(Mopt, θopt, Yo)}

{

1 +
p(M) − p(Mopt)

Qo(M,Yo) −Qo(Mopt, θopt, Yo)

}

,

which is positive w.p.→ 1. Therefore, w.p.→ 1, M0 cannot beM , that is,P(M0 = M) →

0. On the other hand, ifM ∈ Mo, by A7 of JNR, we have, w.p.→ 1, p(M0) − p(Mopt) =
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p(M) − p(Mopt) > Qo(Mopt, Yo) − Qo(M,Yo) = Qo(Mopt, Yo) − Qo(M0, Yo); therefore,

there isθ̃opt ∈ ΘMopt such thatp(M0)−p(Mopt) > Qo(Mopt, θopt, Yo)−Qo(M0, θ0, Yo), or

g(M0, θ0, Yo) > g(Mopt, θ̃opt, Yo), which contradicts the minimization property of(M0, θ0)

as noted above. Thus, again, w.p.→ 1, M0 cannot beM , that is,P(M0 = M) → 0. The

arguments, andA5 of JNR, have shown thatP(M0 = Mopt) → 1.

Next, we extend the convergence and consistency results to with AF. To be specific,

assume that the minimum-dimension criterion is used to select the model within the fence

(e.g., Jiang 2014). Again, assume the existence ofMopt ∈ M. Also assume that model-

based (or parametric) bootstrap is used in the AF procedure,with the bootstrap sample size

B. LetM (t) be the current model. We assume that, given a model, the method of parameter

estimation is determined (e.g., maximum likelihood with the E-M algorithm), so that we

can simply useP ∗(·|M) for the bootstrap empirical probability under modelM . LetM (t)

be the current model. Then, for any cut-offc among a grid of values,C, the updated model,

M (t+1), is such that, for somec∗ ∈ C, P∗{Mc∗ = M (t+1)|M (t)} = maxM∈M P∗{Mc∗ =

M |M (t)} = maxc∈C maxM∈M P∗{Mc = M |M (t)}, whereMc is the model selected by the

fence for the cut-offc. Note thatC is usually chosen so that the fence does not yield a trivial

solution, that is, the minimum model,M0, or the full model,Mf . The following theorem

assumes consistency of the AF, for which sufficient conditions are given, e.g., in Jianget

al. (2008) (again, the numbering of the theorems follows the sequence of JNR).

Theorem 3. Provided that the AF is consistent when bootstrapping undereitherMf or

Mopt, asn,B → ∞, then, w.p.→ 1 asn,B → ∞, the E-MS with AF converges within

two iterations when starting withMf . Furthermore, the limit of the convergence isMopt; in

other words, the E-MS with AF is consistent.

A nice feature of Theorem 3 is that it links the convergence ofE-MS with AF to the

consistency of AF, and shows that the convergence can be veryfast (in two iterations) with

the limit being the optimal model. In our simulation study (see Subsection A.6.1), the E-

MS with AF converges in 2-3 iterations in all of our simulation runs. On the other hand,
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unlike Theorem 1, the convergence in Theorem 3 is not global,because the starting model

is assumed to beMf . In fact, as is seen in the proof below, the GCT is not used in the proof

of Theorem 3. The starting model may be replaced by any overfitting model, but not by an

arbitrary one.

Proof: Let P denote the joint probability distribution of the data and bootstrap sam-

ples. Then, we haveP{M (1) = Mopt|M
(0) = Mf} → 1, asn,B → ∞. Also note that,

givenM (1), the outcome ofM (2) does not depend onM (0). Thus, we haveP{M (2) =

Mopt|M
(1) = Mopt,M

(0) = Mf} = P{M (2) = Mopt|M
(1) = Mopt} → 1, asn,B →

∞. Therefore, we haveP{E-MS converges in 2 iterations|M (0) = Mf} ≥ P{M (2) =

M (1)|M (0) = Mf} ≥ P{M (2) = Mopt,M
(1) = Mopt|M

(0) = Mf} = P{M (1) =

Mopt|M
(0) = Mf}P{M

(2) = Mopt|M
(1) = Mopt,M

(0) = Mf} → 1, asn,B → ∞.

Also note that the E-MS stops wheneverM (t+1) = M (t) takes place, in which case

theM (t+1) is the limit of convergence. Thus, we haveP{the E-MS limit isMopt|M
(0) =

Mf} ≥ P{M (2) = Mopt,M
(1) = Mopt|M

(0) = Mf} → 1, asn,B → ∞, according to

the previous argument, ifMf 6= Mopt. On the other hand, ifMf = Mopt, then, again by

the previous argument, we haveP{the E-MS limit isMopt|M
(0) = Mf} ≥ P{M (1) =

Mopt|M
(0) = Mopt} → 1, asn,B → ∞. This proves the consistency.

A modification of the E-MS with AF, however, can actually achieve the global conver-

gence. This is done by restricting the model space forM (t+1) to be submodels ofM (t). This

is not unreasonable because the bootstrap samples are drawnunderM (t), which would sug-

gest thatM (t) is believed to be a true model; therefore, there is no need to look for anything

beyond the submodels ofM (t). The modified E-MS with AF is also computationally more

attractive, because the model space shrinks with each iteration. As for the convergence

property, we have the following result.

Theorem 4. If M is finite, then the modified E-MS with AF converges globally.

Proof: If the convergence is not achieve, then each time the update is a true sub-

model. As the iteration goes on, this would generate a squence of non-repeating models
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M (0),M (1), . . . . Then, becauseM is finite, the sequence cannot go on forever, so, at some

point, the convergence has to take place, and this is regardless of the starting model.

A.2 Example

We verify the conditionsA1–A5 for Example 5 in the previous subsection. We letδ0

unspecified, for now, and determine it later. HereM = x, andθM = β, the vector of

regression coefficients corresponding tox. Thus,A1 is satisfied if the number of candidate

predictors is finite, and the range of any regression coefficient is bounded.

For A2, it is easy to show thatE{Q(x1, β̃1, Y ) −Q(x1, β1, Y )|yo, x0, β̃0} =
∑m

i=1 di +

δ0
∑n

i=m+1 di, wheredi = [x′1,i(β̃1+β1)−2{yi1(i ≤ m)+x′0,iβ̃01(i>m)}]x
′
1,i(β̃1−β1), which

goes to zero as̃βj → βj, j = 0, 1. Furthermore, we haveE{Q(x1, β1, Y )|yo, x0, β̃0} =

m
∑

i=1

(yi − x′1,iβ1)
2 + δ0

{

(n−m)σ2 +

n
∑

i=m+1

(x′0,iβ̃0 − x′1,iβ1)
2

}

,

and E{Q(x1, β1, Y )|yo, x0, β0} has the same expression with̃β0 replaced byβ0. Thus,

E{Q(x1, β1, Y )|yo, x0, β̃0} → E{Q(x1, β1, Y )|yo, x0, β0} asβ̃j → βj, j = 0, 1.

A3 holds according to Example 5.

For A5, we assume, for simplicity, that all thex columns are linearly independent,

so that|M | = #col(x), where#col(x) is the number of columns inx, andp(M) =

λ|M |, whereλ is a penalty parameter. Then, we haveΨ0 = argminψ∈Ψ{|yo − X(1)β|
2 +

λ#col(x)}, whereyo = (yi)1≤i≤m andX(1) = (x′i)1≤i≤m. Thus,A5 says that there is a

uniqueψ0 = (x0, β0) that minimizesg(ψ) = |yo −X(1)β|
2 + λ#col(x) for all ψ = (x, β).

To see what this means, note that, for fixedx, the minimum ofg(ψ) over β is G(x) =

|PX⊥

(1)
yo|

2 + λ#col(x), wherePX⊥ = I − PX with PX = X(X ′X)−1X ′. Thus,g(ψ) has

a unique minimizerψ0 if and only ifG(x) has a unique minimizerx0, in which caseβ0 is

the least squares (LS) solution corresponding tox0, i.e.,β0 = {X ′
0,(1)X0,(1)}

−1X ′
0,(1)yo.

As for A4, suppose thatψ1 = (x1, β1) 6= ψ0. We consider two cases.
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Case I: β1 6= {X ′
1,(1)X1,(1)}

−1X ′
1,(1)yo. Consider the minimizer of

E{Q(x1, β, Y )|yo, x1, β1} + λ#col(x1)

= |yo −X1,(1)β|
2 + δ0{(n−m)σ2 + |X1,(2)β1 −X1,(2)β|

2} + λ#col(x1)

overβ, whereX(2) = (x′i)m+1≤i≤n. It can be shown that the solution is

β̂1 = {X ′
1,(1)X1,(1) +X ′

1,(2)X1,(2)}
−1{X ′

1,(1)yo +X ′
1,(2)X1,(2)β1}.

We can assume that, with probability tending to one, all the LS solutions are within a com-

pact parameter space (the compact space may expand with the sample size), which holds

under the standard assumptions. Ifβ̂1 = β1, it follows thatβ1 = {X ′
1,(1)X1,(1)}

−1X ′
1,(1)yo,

a contradiction. Thus, we must haveβ1 6= β̂1, hence

E{Q(x1, β, Y )|yo, x1, β1} + λ#col(x1)|β=β̂1

< E{Q(x1, β, Y )|yo, x1, β1} + λ#col(x1)|β=β1,

which implies thatψ1 /∈ a(ψ1).

Case II: β1 = {X ′
1,(1)X1,(1)}

−1X ′
1,(1)yo. Then, we have

|PX⊥

0,(1)
yo|

2 + λ#col(x0) = g(ψ0) < g(ψ1) = |PX⊥

1,(1)
yo|

2 + λ#col(x1). (A.4)

Let ∆(x1) denote the difference between the right side of (A.4) and theleft side, and

D(x1) = |[X1,(2){X
′
1,(1)X1,(1)}

−1X ′
1,(1) −X0,(2){X

′
0,(1)X0,(1)}

−1X ′
0,(1)]yo|

2.

Then, we have

E{Q(x0, β0, Y )|yo, x1, β1} + λ#col(x0)

= |PX⊥

0,(1)
yo|

2 + λ#col(x0) + δ0{(n−m)σ2 + |X1,(2)β1 −X0,(2)β0|
2}

= |PX⊥

1,(1)
yo|

2 + λ#col(x1) + δ0(n−m)σ2 − ∆(x1) + δ0D(x1)

≤ |PX⊥

1,(1)
yo|

2 + λ#col(x1) + δ0(n−m)σ2 − min
x1 6=x0

∆(x1) + δ0 max
x1 6=x0

D(x1).
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Thus, if we takeδ0 = {minx1 6=x0 ∆(x1)}{2 maxx1 6=x0 D(x1)}
−1, which is positive byA5,

then, continuing on, we have

E{Q(x0, β0, Y )|yo, x1, β1} + λ#col(x0)

= |PX⊥

1,(1)
yo|

2 + λ#col(x1) + δ0(n−m)σ2 −
1

2
min
x1 6=x0

∆(x1)

< |PX⊥

1,(1)
yo|

2 + λ#col(x1) + δ0(n−m)σ2

= E{Q(x1, β1, y)|yo, x1, β1} + λ#col(x1).

Therefore, again, we haveψ1 /∈ a(ψ1).

A.3 The FW/BW BIC

We explain the FW/BW BIC procedure (Browman & Speed 2002) using an example.

Suppose that there are 30 candidate variables. First carry out the forward selection by

selecting the first variable,x(1), that minimizesRSS(y,X) = minβ RSS(y,X, β), where

RSS(y,X, β) =

n
∑

i=1

(yi − x′iβ)2

with X = (x′i)1≤i≤n, over allX that consists of a single column ofx; next, we select the

second variable,x(2), that minimizesRSS(y,X) over allX that consists of two columns

of x, with the first column beingx(1) (so the selection is for the second column only);

we then select the third variable,x(3), that minimizesRSS(y,X) over allX that consists

of three columns, with the first two columns beingx(1), x(2) (so the selection is for the

third columm only), and so on. The forward selection continues until 50% of the vari-

ables are selected. Thus, we havex(1), . . . , x(15) after the forward selection. We then

follow with a backward elimination by taking out the first variable,x(1), from the 15 vari-

ables, that minimizesRSS(y, {x(1), . . . , x(15) without x}) overx ∈ {x(1), . . . , x(15)}; we

then take out the second variable,x(2), from the remaining 14 variables, that minimizes

RSS(y, {x(1), . . . , x(15) without x(1) and x}) overx ∈ {x(1), . . . , x(15)} \ {x(1)}; and so

on. The backward elimination continues until all 15 variables are taken out. We then ap-

ply the BIC to the following reduced model space generated bythe FW/BW procedure:
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M1 = {x(1)}, M2 = {x(1), x(2)}, . . . ,M15 = {x(1), . . . , x(15)}, M16 = {x(1), . . . , x(15)} \

{x(1)}, . . . ,M29 = {x(1), . . . , x(15)} \ {x(1), . . . , x(14)}.

A.4 Some derivations in Section 3

A.4.1 Some details regarding Example 2

We first derive the conditional expectations of BIC and RSS under the current model,

Mc. Note thatθ is involved only inlx, hence, the MLE ofθ involves only thex data.

Therefore, we first update the estimate ofθ based on thex data. Letθ̂c denote the current

estimate. Then, we have, by independence,

Ec(lX |xo) ∝ nr(q − 1) log(1 − θ) + {log θ − log(1 − θ)}
n
∑

i=1

Ec{s(Xi)|xo,i},

whereXi = (Xijk)1≤j≤q,1≤k≤r, s(Xi) =
∑r

k=1

∑q−1
j=1(xijk + xi,j+1,k − 2xijkxi,j+1,k) = #

of cases amongxijk, 1 ≤ k ≤ r, 1 ≤ j ≤ q − 1 such that|xijk − xi,j+1,k| = 1, Ec means

(conditional) expectation under the current estimates, and xo,i denotes all of the observed

x’s amongxijk, 1 ≤ j ≤ q, 1 ≤ k ≤ r. Similarly, letxm,i denote all of the missingx’s

amongxijk, 1 ≤ j ≤ q, 1 ≤ k ≤ r. Let fc denote the (conditional) pmf, or pdf, under the

current estimates. It can be shown that

fc(xi) =
(1 − θ̂c)

r(q−1)

2r

(

θ̂c

1 − θ̂c

)s(xi)

,

wherexi = (xijk)1≤j≤q,1≤k≤r. Thus, we havefc(xm,i|xo,i) = fc(xi)/
∑

xm,i
fc(xi) =

γ̂
s(xi)
c /

∑

xm,i
γ̂
s(xi)
c , whereγ̂c = θ̂c/(1 − θ̂c), and

∑

xm,i
is over all the missingx’s among

xijk, 1 ≤ j ≤ q, 1 ≤ k ≤ r (each taking the value of0 or 1). It follows that

Ec{s(Xi)|xo,i} =

∑

xm,i
s(xi)γ̂

s(xi)
c

∑

xm,i
γ̂
s(xi)
c

.

Thus, it is easy to obtain the updated for theθ estimate as

θ̂ =
1

nr(q − 1)

n
∑

i=1

∑

xm,i
s(xi)γ̂

s(xi)
c

∑

xm,i
γ̂
s(xi)
c

.

As a comparison, note that the MLE ofθ based on all of thex’s is
∑n

i=1 s(xi)/nr(q − 1).
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Now assume that the MLÊθ has been obtained via the E-M algorithm. To evaluate the

conditional expectations, we need to obtainfc(ym,i, xm,i|yo,i, xo,i). Note that

fc(ym,i, xm,i|yo,i, xo,i) =
fc(yi, xi)

fc(yo,i, xo,i)
=
fc(yi|xi)fc(xi)

fc(yo,i, xo,i)
,

andfc(yi|xi) = (2πσ̂2
c )

−1/2 exp{−(yi − x′f,iβ̂f,c)
2/2σ̂2

c}. If yi is observed, then, we have

fc(yo,i, xo,i) =
∑

xm,i
fc(yi, xi) =

∑

xm,i
fc(yi|xi)fc(xi). Thus, we have

fc(ym,i, xm,i|yo,i, xo,i) =
fc(yi|xi)fc(xi)

∑

xm,i
fc(yi|xi)fc(xi)

=
exp{−(2σ̂2

c )
−1(yi − x′f,iβ̂f,c)

2}γ̂s(xi)

∑

xm,i
exp{−(2σ̂2

c )
−1(yi − x′f,iβ̂f,c)2}γ̂s(xi)

,

whereγ̂ = θ̂/(1 − θ̂) (note that̂γ does not change with the iteration). Define

wo,i(yi, xi) =
exp{−(2σ̂2

c )
−1(yi − x′c,iβ̂c)

2}γ̂s(xi)

∑

xm,i
exp{−(2σ̂2

c )
−1(yi − x′c,iβ̂c)2}γ̂s(xi)

,

andwm,i(xi) = γ̂s(xi)/
∑

xm,i
γ̂s(xi). It can be shown thatEc{RSS(Y,X, β)|yo, xo} =

nmσ̂
2
c +
∑

i∈Io

∑

xm,i
wo,i(yi, xi)(yi−x′iβ)2 +

∑

i∈Im

∑

xm,i
wm,i(xi)(x

′
c,iβ̂c −x′iβ)2, where

Ec represents the conditional expectation underMc; xc,i is thexi underMc; β̂c, σ̂
2
c are the

current estimators underMc; Io = {1 ≤ i ≤ n : yi is observed}, Im = {1 ≤ i ≤ n : yi

is missing}, andnm = |Im| (cardinality). Note that, likêγ, wm,i does not change with the

iterations. Thus, by differentiating and letting the derivative equal to0, we get

β̂ =







∑

i∈Io

∑

xm,i

wo,i(yi, xi)xix
′
i +
∑

i∈Im

∑

xm,i

wm,i(xi)xix
′
i







−1

×





∑

i∈Io

∑

xm,i

wo,i(yi, xi)xiyi +







∑

i∈Im

∑

xm,i

wm,i(xi)xix
′
c,i







β̂c



 ;

andRSSc(M |yo, xo) ≡ minβ Ec{RSS(Y,X, β)|yo, xo}

∝
∑

i∈Io

∑

xm,i
exp{−(2σ̂2

c )
−1(yi − x′c,iβ̂c)

2}γ̂s(xi)(yi − x′iβ̂)2

∑

xm,i
exp{−(2σ̂2

c )
−1(yi − x′c,iβ̂c)2}γ̂s(xi)

+
∑

i∈Im

∑

xm,i
γ̂s(xi)(x′c,iβ̂c − x′iβ̂)2

∑

xm,i
γ̂s(xi)

.
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An expression proportional toEc(lM,Y |X |yo, xo) can be obtained similarly. It follows that

β̂M = β̂ above withxi replaced byxM,i, and σ̂2 = n−1{
∑

i∈Io

∑

xm,i
wo,i(yi, xi)(yi −

x′M,iβ̂M)2 + nmσ̂
2
c +

∑

i∈Im

∑

xm,i
wm,i(xi)(x

′
c,iβ̂c − x′M,iβ̂M)2}. It follows that

BICc(M |yo, xo) ∝ n log







nmσ̂
2
c +

∑

i∈Io

∑

xm,i

wo,i(yi, xi)(yi − x′M,iβ̂M)2

+
∑

i∈Im

∑

xm,i

wm,i(xi)(x
′
c,iβ̂c − x′M,iβ̂M)2







+ |M | log(n).

A.4.2 Some details regarding Example 3

We derive the conditional expectation assuming that the current model isMf . The same

derivation applies to any current model,Mc, with only notational changes. LetEf denote

the conditional expectation underMf and the current estimates of parameters, underMf ,

includingβf , σ2, µr, πr, 1 ≤ r ≤ s, andΩ. Let yo, xo denote the observedy, x, respec-

tively. Similarly, let ym, xm, xc,m, andxd,m denote the missing parts ofy, x, xc, andxd,

respectively. Although it is possible to obtain the conditional densityfM(ym, xm|yo, xo),

the result is not a common distribution (e.g., normal), under which the conditional ex-

pectations can be easily obtained analytically. Alternatively, one may consider sampling

from the conditional distribution, and use the Monte Carlo method to compute the condi-

tional expectations. To do so, first note that it is easy to show that one can sample from

the joint conditional distribution by sampling independently from the conditional distri-

bution for each subject. To sample from the subject conditional distribution, note that

fM,i(yi,m, xi,m|yi,o, xi,o) ∝ fM,i(yi, xi) ∝

exp

[

s
∑

r=1

1(xi,d=vr)

{

log πr −
1

2
(xi,c − µr)

′Ω−1(xi,c − µr)

}

−
(yi − x′i,MβM)2

2σ2

]

, (A.5)

where∝ means that the expression is up to a function ofyi,o, xi,o, which is considered con-

stant during the sampling ofyi,m, xi,m. Next, we employ the Metropolized independence

sampler (MIS, e.g., Liu 2004, p. 115), which is a special caseof the Metropolis-Hastings

algorithm, as follows. Writez = (yi,m, xi,m), andf(z) = the right side of (A.5) (note that
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yi,o, xi,o are held fix inyi, xi). Given the current statez(t), (a) drawz ∼ g(z), whereg(·)

is a trial density whose expression is known, up to a constant, and from which one knows

how to sample; (b) simulateu ∼ Uniform[0, 1] and let

z(t+1) =







z, if u ≤ min{1, w(z)/w(z(t))},

z(t), otherwise,

wherew(z) = f(z)/g(z) is the importance sampling weight. The algorithm generates

a Markov chain that converges (in distribution) to its stationary distribution, which is the

target distribution on the left side of (A.5).

It remains to choose the trial densityg. Let z = (xi,d,m, xi,c,m, yi,m), where, for the

moment, assume that all three components ofz are non-empty. We proceed as follows:

(I) First drawxi,d,m from f(xi,d,m|xi,d,o). Note that, given the missing value pattern for

xi, each vectorvr is partitioned asvr,i,o andvr,i,m, with the notation being understood in

obvious ways. Then, givenxi,d,o = vr,i,o, the possible values ofxi,d,m arevr̃,i,m, 1 ≤ r̃ ≤ s

such thatvr̃,i,o = vr,i,o. In other words, defineR(v) = {1 ≤ r̃ ≤ s : vr̃,i,o = v}. Then, the

possible values ofxi,d,m arevr̃,i,m, r̃ ∈ R(vr,i,o). Also, for anyr̃ ∈ R(vr,i,o), we have

P(xi,d,m = vr̃,i,m|xi,d,o = vr,i,o) =
P(xi,d,m = vr̃,i,m, xi,d,o = vr̃,i,o)

P(xi,d,o = vr,i,o)
= cP(xi,d = vr̃),

wherec does not depend oñr. By summing over̃r ∈ R(vr,i,o) and noting thatP(xi,d =

vr̃) = πr̃, by assumption (ii), we getc = {
∑

r̃∈R(vr,i,o) πr̃}
−1. It follows that

P(xi,d,m = vr̃,i,m|xi,d,o = vr,i,o) =
πr̃

∑

r′∈R(vr,i,o) πr′
, (A.6)

r̃ ∈ R(vr,i,o). The conditional densityf(xi,d,m|xi,d,o) is given by the right side of (A.6) with

vr,i,o replaced byxi,d,o andr̃ being thẽr ∈ R(xi,d,o) such thatvr̃,i,m = xi,d,m. The sample

xi,d,m is drawn from the conditional distribution such that it has the probability given by

(A.6), with vr,i,o replaced byxi,d,o, of taking the valuevr̃,i,m, r̃ ∈ R(xi,d,o).

(II) Next, note that, by assumption (iii), we haveXi,c|xi,d ∼ N(µr,Ω), wherer is such
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thatxi,d = vr. Write Ω = (ωkl)1≤k,l≤p. Then, we have




Xi,c,m

Xi,c,o





∣

∣

∣

∣

∣

∣

xi,d ∼ N









µr,i,m

µr,i,o



 ,





Ωi,mm Ωi,mo

Ωi,om Ωi,oo







 ,

whereΩi,mm = (ωkl)k,l∈si,c,m
, Ωi,mo = (ωkl)k∈si,c,m,l∈si,c,o

, Ωi,om = Ω′
i,mo, andΩi,oo =

(ωkl)k,l∈si,c,o
with si,c,o = {1 ≤ k ≤ p : xi,c,k observed} (xi,c,k is thekth component of

xi,c) andsi,c,m = {1, . . . , p} \ si,c,o. It follows (e.g., Jiang 2007, Appendix C.1), that

Xi,c,m|xi,c,o, xi,d ∼ N{µr,i,m +Ωi,moΩ
−1
i,oo(xi,c,o −µr,i,o),Ωi,mm−Ωi,moΩ

−1
i,ooΩi,om}. (A.7)

Denote the mean vector and covariance matrix of the multivariate normal distribution on

the right side of (A.7) byµr,i,c,m andΩi,c,m, respectively. Then, we have

f(xi,c,m|xi,c,o, xi,d) ∝ exp

{

−
1

2
(xi,c,m − µr,i,c,m)′Ω−1

i,c,m(xi,c,m − µr,i,c,m)

}

,

wherer is such thatxi,d = vr.

(III) Finally, by assumption (iv), we haveYi,m|xi ∼ N(x′i,MβM , σ
2), hence

fM(yi,m|xi) ∝ exp

{

−
(yi,m − x′i,MβM)2

2σ2

}

.

In conclusion, we can choose (after dropping a constant term)

g(z) =

{

πr̃
∑

r′∈R(xi,d,o) πr′

}

exp

{

−
1

2
(xi,c,m − µr,i,c,m)′Ω−1

i,c,m(xi,c,m − µr,i,c,m)

−
(yi,m − x′i,MβM)2

2σ2

}

,

wherer̃ is such that̃r ∈ R(xi,d,o) andvr̃,i,m = xi,d,m, andr is such thatxi,d = vr. The

sampling fromg consists of three steps: (I) drawxi,d,m from the distribution that has the

probability equal toπr̃{
∑

r′∈R(xi,d,o) πr′}
−1 of taking the valuevr̃,i,m for r̃ ∈ R(xi,d,o); (II)

given thexi,d,m drawn, drawxi,c,m from the multivariate normal distribution in (A.7), where

r is such thatxi,d = vr; (III) given thexi,d,m, xi,c,m drawn, drawyi,m fromN(x′i,MβM , σ
2).

If any of the componentsxi,d,m, xi,c,m, or yi,m are empty, we simply skip the corre-

sponding step(s) (I, II, or III).
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A.5 Some derivations in Section 6

A.5.1 Derivation of (16)

First note that

{Yi − EM,θM
(Yi)}

21(Mind,i=0) = (Yi − ci)
21(Mind,i=0)

+2(Yi − ci){ci − EM,θM
(Yi)}1(Mind,i=0)

+{ci − EM,θM
(Yi)}

2

= ξi + 2ηi + ζi,

whereci is defined in JNR [above (16)]. We have

E(ηi) = {ci − EM,θM
(Yi)}[E{Yi1(Mind,i=0)} − ciP(Mind,i = 0)]

= {ci − EM,θM
(Yi)}[E{Yih(Yi)} − ciE{h(Yi)}]

= 0.

Thus, by the law of large numbers (LLN), we have
∑n

i=1 ηi = oP(n) (e.g., Jiang 2010, ch.

3). It follows that

n
∑

i=1

{Yi − EM,θM
(Yi)}

21(Mind,i=0)

=

n
∑

i=1

(Yi − ci)
21(Mind,i=0) +

n
∑

i=1

{ci − EM,θM
(Yi)}

21(Mind,i=0) + δ

=
n
∑

i=1

{ci − EM,θM
(Yi)}

21(M,ind,i=0) + δ1,

wherer is a lower-order term, andr1 is a sum of a term that is not model-dependent and a

lower-order term. Similarly, it can be shown that

n
∑

i=1

Ec{Yi − EM,θM
(Yi)}

21(Mind,i=1) =

n
∑

i=1

{E(Yi) − EM,θM
(Yi)}

21(Mind,i=1) + δ2,

where andδ2 is a sum of a term that is not model-dependent and a lower-order term. Thus,
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by (15) of JNR, we have

Ec(QM |yobs) =
n
∑

i=1

{ci − EM,θM
(Yi)}

21(Mind,i=0)

+

n
∑

i=1

{E(Yi) − EM,θM
(Yi)}

21(Mind,i=1) + δ,

whereδ is a sum of terms that are not model-dependent and lower-order terms. Thus,

by taking the expectation, we obtain (16) of JNR. It should benoted that, for the above

argument to hold, some regularity conditions are needed that ensure, for example, the ex-

pectation of a lower-order term is a lower-order term.

A.5.2 Derivation of (17)

Because (16) holds for everyM , by lettingM = Mopt, we have

E{Ec(QMopt|Yobs)} =
n
∑

i=1

{ci − E(Yi)}
2E{h(Yi)} + δopt, (A.8)

whereδopt consists of terms that are not model-dependent and lower-order terms. Note

that, whenM = Mopt, EM,θM
becomesE, and the second term on the right side of (16) of

JNR disappears. By taking the difference between (16) of JNRand (A.8), we get

E{Ec(QM |Yobs)} − E{Ec(QMopt |Yobs)}

=
n
∑

i=1

{ci − EM,θM
(Yi)}

2E{h(Yi)} +
n
∑

i=1

{E(Yi) − EM,θM
(Yi)}

2E{g(Yi)}

−
n
∑

i=1

{ci − E(Yi)}
2E{h(Yi)} + δ,

whereδ has the same meaning as in (16) of JNR. Furthermore, note that
n
∑

i=1

{E(Yi) − EM,θM
(Yi)}

2E{g(Yi)} = c−
n
∑

i=1

{E(Yi) − EM,θM
(Yi)}

2E{h(Yi)},

wherec does not depend on the MDM. Also note that{ci − EM,θM
(Yi)}

2 − {E(Yi) −

EM,θM
(Yi)}

2 − {ci − E(Yi)}
2 = 2{ci − E(Yi)}{E(Yi) − EM,θM

(Yi)}, and

{ci − E(Yi)}{E(Yi) − EM,θM
(Yi)}E{h(Yi)}

= [E{Yih(Yi)} − E(Yi)E{h(Yi)}]{E(Yi) − EM,θM
(Yi)}

= cov{Yi, h(Yi)}{E(Yi) − EM,θM
(Yi)}
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(recall the definition ofci). The second equation in (17) thus follows.

The derivation in Subsection A.5.1, and the LLN, also show that E{Ec(QM |Yobs)} −

E{Ec(QMopt|Yobs)} is the leading term for the difference in (15) betweenM andMopt. The

first equation in (17) thus follows.

A.6 Additional simulation results

A.6.1 Linear regression: Comparison of different strategies

We carry out a simulation study under the following linear regression model (see Ex-

ample 3). Suppose that the candidate covariates consist of two continuous variables and

two indicator variables. So,x1, x2 are continuous (withp = 2) andx3, x4 are indictors

(0 or 1). Thus,xi = (xi1, xi2, xi3, xi4)
′ with xi,c = (xi1, xi2)

′ andxi,d = (xi3, xi4)
′. The

distinct possible values forxi,d arev1 = (0, 0)′, v2 = (0, 1)′, v3 = (1, 0)′, andv4 = (1, 1)′.

Assumption (iii) of Example 3 means that there are2 × 1 vectorsµ1, µ2, µ3, µ4 and2 × 2

covariance matrixΩ such that, givenxi,d = vr, xi,c ∼ N(µr,Ω), r = 1, 2, 3, 4.

The simulations are run with the sample sizen = 100 and the true model beingx1 and

x3. The true parameters areβ1 = β3 = σ2 = 1. The trueµr is the same asvr, r = 1, 2, 3, 4;

and the trueΩ is the 2 × 2 identity matrix. After the complete data is generated, we

randomly select a subset of indexes from{1, . . . , n} for the response as well as for each

of the candidate predictors, which correspond to the missing data, so that100pm % of the

data are missing for the response and each of the candidate predictors. Here we consider

two cases:pm = 0.1 andpm = 0.2.

We study the performance of E-MS with the invisible fence (IF; Jianget al. 2011b; also

see Jiang 2014), which, in this case, is equivalent to the AF,but computationally more effi-

cient. On the other hand, it is known that the latter may suffer from the “dominant factor”.

Namely, although the true coefficients for the true predictors (x1 andx3) are both equal to

1, it turns out that the continuous predictor is the dominant factor. Thus, with a moderate

sample size, such as in the current case, the IF tends to overwhelmingly selectx1 at dimen-

sion1, leading to a potential underfitting. To overcome such a problem, we consider the
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following modification of the IF to make it more “aggressive”. Let α be a chosen number

between0 and1. Let d∗ be the selected dimension by IF andp∗ be the corresponding max-

imum empirical probability (that a given model is selected at the dimension). Letp∗1 be

the largest maximum empirical probability corresponding to a dimension greater thand∗

(thus,p∗1 < p∗). Let d∗1 be the corresponding dimension top∗1. If p∗1 ≥ (1 − α)p∗, thend∗1 is

selected instead ofd∗. It is clear that the modified IF is more in favor of a “larger” model,

and in this sense it is more aggressive.

We run a same-data comparison of the E-MS with a number of different procedures.

The first is to combine the IF with the E-M (not E-MS) algorithm. Namely, we first run the

E-M algorithm to obtain the parameter estimates under the full model. We then generate

(parametric) bootstrap samples under the full model, as in the IF. The best part of this

procedure is that, when one generates the bootstrap samples, one generates complete data

rather than data with missing values. We then apply the modified IF, as described above,

to the bootstrapped data. We call such a procedure EMIF. In our simulation study, we

consider three different values ofα: α = 0 (corresponding to IF without the modification),

α = 0.1, andα = 0.5, for EMIF as well as each of the comparing procedures described

below, except the E-MS.

Of course, this raises a question on whatα is the best, which one may not know in prac-

tice. On the other hand, the E-MS seems to have some advantagein this regard. The idea is

to start with a relatively largeα (say,α = 0.5), in order to be more conservative in dropping

the predictors, and gradually reducesα as the iteration progresses. More specifically, we

begin withα = 0.5; with each iteration, we reduceα by half, until convergence.

In addition to EMIF and E-MS, two other methods are also included in our comparison.

One is IF based on the complete-record-only analysis (CRNIF); the other is IF with the

missing data replaced by the imputed data (IMIF). The latteris based on a method of

multivariate imputation developed by van Buurenet al. (2005), implemented in the R

package, aregImpute(). As a comparison, we have also considered IF based on the complete
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data that were generated before the missing values were taken out (CDIF). The latter is, of

course, not possible in a practical situation, but it would be interesting to see how much

loss of efficiency there is for a method, if any, compared to the “gold standard”. Note that

all the comparing methods are in conjunction with the IF, theonly difference being how the

missing data are handled. The results based on 100 simulation runs are presented in Tables

A.1 & A.2, where OF standards for overfitting, that is, the empirical probability that the

selected model includes all the true predictors plus at least one extraneous predictor; UF

standards for underfitting, that is, the empirical probability that the selected model misses

at least one true predictor [but may include extraneous predictor(s)]; other performance

measures are the same as before (corresponding s.d.’s to theright, for MC and MIC).

Table A.1: Summary of Performance (pm = 0.1)

Method α TP OF UF MC s.d. MIC s.d.

CRNIF 0 0.67 0.00 0.33 1.67 0.47 0.00 0.00

0.1 0.85 0.00 0.15 1.85 0.36 0.00 0.00

0.5 0.73 0.27 0.00 2.00 0.00 0.27 0.45

IMIF 0 0.61 0.00 0.39 1.61 0.49 0.00 0.00

0.1 0.88 0.00 0.12 1.88 0.33 0.00 0.00

0.5 0.72 0.28 0.00 2.00 0.00 0.28 0.45

EMIF 0 0.66 0.00 0.34 1.66 0.48 0.00 0.00

0.1 0.88 0.00 0.12 1.88 0.33 0.00 0.00

0.5 0.75 0.25 0.00 2.00 0.00 0.25 0.44

CDIF 0 0.71 0.00 0.29 1.71 0.46 0.00 0.00

0.1 0.92 0.00 0.08 1.92 0.27 0.00 0.00

0.5 0.69 0.31 0.00 2.00 0.00 0.31 0.46

E-MS 0.98 0.01 0.01 1.99 0.10 0.01 0.10
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Table A.2: Summary of Performance (pm = 0.2)

Method α TP OF UF MC s.d. MIC s.d.

CRNIF 0 0.56 0.00 0.44 1.56 0.50 0.01 0.10

0.1 0.73 0.07 0.20 1.80 0.40 0.09 0.29

0.5 0.68 0.31 0.01 1.99 0.10 0.32 0.47

IMIF 0 0.59 0.00 0.41 1.59 0.49 0.01 0.10

0.1 0.85 0.00 0.15 1.85 0.36 0.01 0.10

0.5 0.81 0.19 0.00 2.00 0.00 0.19 0.39

EMIF 0 0.65 0.00 0.35 1.65 0.48 0.00 0.00

0.1 0.88 0.00 0.12 1.88 0.33 0.00 0.00

0.5 0.82 0.17 0.01 1.99 0.10 0.18 0.39

CDIF 0 0.75 0.00 0.25 1.75 0.44 0.00 0.00

0.1 0.94 0.00 0.06 1.94 0.24 0.00 0.00

0.5 0.74 0.26 0.00 2.00 0.00 0.26 0.44

E-MS 0.95 0.01 0.04 1.96 0.20 0.03 0.17

It is clear in this comparison that, overall, E-MS outperforms not only all of the methods

that are practically feasible (CRNIF, IMIF, EMIF), but alsothe “gold standard” (CDIF) that

is practically infeasible. In fact, in terms of the overall performance, the order seems to be

(from best to worst) E-MS, CDIF, EMIF, IMIF, CRNIF. Of course, it is not surprising that

CRNIF takes the last place, but what seems a little unexpected is that E-MS even (slightly)

outperforms CDIF. An explanation for this is that the performance of CDIF still suffers, to

some extend, the dominant factor effect (Jianget al. 2011b), but E-MS is able to overcome

this (see below). A key to this “super-performance” isα, which may be viewed as a tuning

parameter. It appears that the bestα for CRNIF, IMIF, EMIF, and CDIF is somewhere

between0.1 and0.5. Of course, in the simulation study we could explore this best value, but

it would not be possible in practice. On the other hand, the E-MS seems to be able to get the

best out of the ‘α-business” during its iterations. By the way, in all of the simulation runs,
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the E-MS converged in 2-3 iterations. Also, it seems that theperformance of IMIF, EMIF,

and E-MS are not affected much by the increase ofpm. This is a bit surprising, as larger

pm means less observed data. In fact, withpm = 0.1, one expects about 59% complete

data records; withpm = 0.2, the % of the complete data records drops to less than 33%.

On the other hand, it takes about twice the computing time to run the E-MS forpm = 0.2,

compared topm = 0.1. This is reasonable, as more data are missing underpm = 0.2;

therefore, the conditional expectations, which have to be dealt with via the Monte-Carle

method (see Example 3), need to be evaluated more often than underpm = 0.1.

A.6.2 Robustness of E-MS

We investigate performance of the E-MS in terms of robustness under different aspects

of model misspecification. Both situations are in association with the example of backcross

experiment in JNR (see Example 2 and Section 5).

1. A situation where the true model is not among the candidates. Nguyenet al. (2013)

considered a situation where the true underlying model is not among those considered as

candidate models. Namely, all of the candidate models assume that the true QTLs are at

the exact locations of some of the markers under consideration. In practice, however, this

may not be true; in other words, the true QTLs may be at locations between the markers.

More specifically, the authors considered the case where thetrue QTLs are located in the

middle of their flanking markers; thus, the true underlying model is not a candidate model.

Nevertheless, the goal was to identify, among the candidatemodels, the one that best ap-

proximates the true model in the sense that the identified markers are closest to the true

QTLs. Here we consider a setting similar to those of Nguyenet al. (2013). There are 6

true QTLs with identical signals,β (see below). The trueθ is 0.2, which corresponds to a

heritability of approximately 25%. The true QTLs are located in the middle of two flanking

markers, as follows.1st chromosome: markers 1 and 2; 3 and 4; 5 and 6.2nd chromosome:

markers 1 and 2; 3 and 4.3rd chromosome: markers 1 and 2. Following Nguyenet al.

(2013) (also see Broman & Speed 2002), the QTL is considered correctly identified if one
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of the two flanking markers of the true QTL is identified; in case both of the flanking mark-

ers are identified, one is counted as correctly identified, the other incorrectly identified, to

avoid double counts. Once again, we compare the performanceof the E-MS with BIC with

the CDBIC. The results based on 100 simulations are reportedin Table A.3 under the same

setting as Table 2 of JNR. Overall, there is no obvious trend,in either way of the perfor-

mance, compared to Table 2 of JNR. For example, the relative efficiency (% Ratio) of the

E-MS with respect to CDBIC is very comparable to that reported in Table 2 of JNR. This

suggests that E-MS is still capable in detecting the best approximating model in case that

the true model is not among the candidates.

Table A.3: Backcross Experiment; QTLs at Middle of Flanking Markers

n β σ Method TP MC (s.d.) MIC (s.d.) % Ratio

250 1 1 E-MS 0.36 5.62 (0.56) 1.05 (1.04) 86%

CDBIC 0.45 5.65 (0.54) 0.66 (0.71)

100 1 1 E-MS 0.22 4.48 (0.85) 1.46 (1.25) 63%

CDBIC 0.35 4.64 (0.80) 1.11 (1.10)

250 0.5 1 E-MS 0.41 4.43 (0.81) 1.04 (1.10) 93%

CDBIC 0.44 4.57 (0.83) 0.74 (0.81)

250 1 0.1 E-MS 0.41 5.99 (0.10) 0.93 (0.97) 67%

CDBIC 0.61 5.99 (0.10) 0.51 (0.73)

500 1 1 E-MS 0.52 5.96 (0.20) 0.70 (0.88) 90%

CDBIC 0.58 5.98 (0.14) 0.50 (0.69)

2. A situation of heavy-tailed error distribution. In this study we consider model mis-

specification in terms of the distribution of the regressionerrors in the backcross experi-

ment. Namely, the errorsǫi are assumed to be normally distributed, but the assumption fails

and the errors, instead, have a t-distribution with 6 degrees of freedom (so the errors have

finite fifth moment, but no higher moments). However, pretendthat one does not know

about the t-distribution, and proceeds with the E-MS under the normality assumption. The

E-MS is carried out the same way as in Example 2 and Section 5 ofJNR and, in particular,
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with the FW/BW BIC (see Section A.3). Here we consider the case that the true QTLs are

on the markers, as in Section 5 of JNR. The results based on 100simulations are reported

in Table A.4. Again, the setting is the same as Table 2 of JNR. Compared to the latter, the

only significant drop in the E-MS performance seems to be the case with weaker signal,

that is,β = 0.5 (n = 250, σ = 1). On the other hand, the results seem to suggest that

the performance of E-MS is robust to the heavy-tailed error as long as the sample size is

relatively large, or the signal is relatively strong (compared to the noise).

Table A.4: Backcross Experiment; Heavy-tailed Error Distribution

n β σ Method TP MC (s.d.) MIC (s.d.) % Ratio

250 1 1 E-MS 0.54 5.98 (0.14) 0.75 (1.02) 73%

CDBIC 0.74 5.99 (0.10) 0.36 (0.73)

100 1 1 E-MS 0.17 5.36 (0.76) 1.79 (1.70) 52%

CDBIC 0.33 5.59 (0.60) 0.98 (1.18)

250 0.5 1 E-MS 0.03 4.61 (0.75) 0.87 (0.92) 25%

CDBIC 0.12 4.84 (0.72) 0.43 (0.77)

250 1 0.1 E-MS 0.63 6.00 (0.00) 0.61 (0.91) 85%

CDBIC 0.74 6.00 (0.00) 0.36 (0.73)

500 1 1 E-MS 0.64 6.00 (0.00) 0.46 (0.69) 83%

CDBIC 0.77 6.00 (0.00) 0.32 (0.68)

A.6.3 Missing covariates under various MDM

In this subsection we report results of the last simulation study of Subsection 6.1, dis-

cussed near the end of the subsection. See Tables A.5 and A.6.It is seen that, in some

cases (5 out of 10), the E-MS performed worse, but in some cases (5 out of 10) the E-MS

performed better (note that these simulations used the samerandom seeds, so the results are

completely comparable). In particular, there are a couple of cases of super-performance,

in which the E-MS actually outperformed the CDBIC. An interpretation is that the missing

data indicators may carry additional information to the complete data, which the E-MS is

able to make use of (while the CDBIC cannot), if the MDM functions in the right way.
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Table A.5: Backcross Experiment with MDM, Scenario MA

n β σ Method TP MC (s.d.) MIC (s.d.) % Ratio

250 1 1 E-MS 0.52 5.99 (0.10) 0.84 (1.08) 84%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

100 1 1 E-MS 0.09 5.31 (0.65) 1.64 (1.59) 39%

CDBIC 0.23 5.49 (0.64) 1.22 (1.37)

250 0.5 1 E-MS 0.05 4.52 (0.81) 1.07 (1.07) 42%

CDBIC 0.12 4.73 (0.80) 0.64 (0.78)

250 1 0.1 E-MS 0.78 6.00 (0.00) 0.23 (0.45) 126%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

500 1 1 E-MS 0.51 6.00 (0.00) 0.68 (0.79) 76%

CDBIC 0.67 6.00 (0.00) 0.46 (0.72)

Table A.6: Backcross Experiment with MDM, Scenario MB

n β σ Method TP MC (s.d.) MIC (s.d.) % Ratio

250 1 1 E-MS 0.49 5.99 (0.10) 0.78 (0.89) 79%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

100 1 1 E-MS 0.14 5.27 (0.78) 1.84 (1.78) 61%

CDBIC 0.23 5.49 (0.64) 1.22 (1.37)

250 0.5 1 E-MS 0.09 4.55 (0.82) 0.93 (0.92) 75%

CDBIC 0.12 4.73 (0.80) 0.64 (0.78)

250 1 0.1 E-MS 0.79 6.00 (0.00) 0.26 (0.54) 127%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

500 1 1 E-MS 0.54 6.00 (0.00) 0.67 (0.72) 81%

CDBIC 0.67 6.00 (0.00) 0.46 (0.72)

A.6.4 More comparison with IMBIC

In this subsection, we present some additional simulation results regarding the compar-

ison of E-MS with imputation-based methods. Unlike in Subsection A.6.1, which involved
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the IF method, the comparison here will focus on the BIC method. As in Subsection A.6.1,

we use the R package aregImpute() (van Buurenet al. 2005) for the imputation based

method, IMBIC. A brief description is as follows. By default, aregImpute uses predictive

mean matching (which does not work well when fewer than 3 variables are used to pre-

dict the target variable, if the “closest” match is chosen).With the “regression” option,

aregImpute will use linear extrapolation to obtain a (hopefully) reasonable distribution of

imputed values. Both linear and non-linear imputations areconsidered in our simulation.

Our results are based on 100 (multiple) imputations, from which the model with the highest

probability (or frequency) is chosen.

The results under the non-linear imputation (four knots,nk = 4; “closest ” match)

are presented in Table 3 of JNR. The results under the linear imputation (no knots) are

presented in Table A.7 here. The two sets of results are quitesimiliar. Overall, the IMBIC

results are not comparable to the E-MS results, especially in terms of the % Ratio.

A.6.5 Performance of E-MS in terms of parameter estimation

In this subsection, we consider performance of E-MS in termsof parameter estimation

under the backcross experiment. Note that, because some of the parameters, such as the

regression coefficients, depend on the selected model, it isnot very clear how to compare

these parameters under different models. Therefore, in this study, we have focused on

parameters that are common under all of the candidate models, namely, the recombination

fraction,θ, and the error variance,σ2. We evaluate performance of the estimators ofθ and

σ2 based on the (final) selected model by the E-MS in terms of bias, variance, and mean

squared error (MSE), and compare the results with those based on the selected model by

CDBIC. The results, based on 100 simulation runs, are reported in Tables A.8 and A.9.

Note that, because the estimators ofθ only depend on thex data, the results do not change,

within the same sample size, asβ andσ change (which only affect they data). The trueθ

is 0.2. Overall, the results show that, as the conditions improve,that is, eithern increases,

or β increases, orσ decreases, the performance of E-MS and CDBIC are getting closer in
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estimating both parameters.

Table A.7: More Comparison with IMBIC in Backcross Experiment

n β σ Method TP MC (s.d.) MIC (s.d.) % Ratio

250 1 1 E-MS 0.51 5.99 (0.10) 0.71 (0.91) 82%

IMBIC 0.35 5.79 (0.50) 0.92 (0.94) 56%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

100 1 1 E-MS 0.12 5.22 (0.62) 1.59 (1.70) 52%

IMBIC 0.08 4.68 (0.85) 1.24 (1.11) 35%

CDBIC 0.23 5.49 (0.64) 1.22 (1.37)

250 0.5 1 E-MS 0.08 4.50 (0.90) 1.12 (1.07) 67%

IMBIC 0.02 4.10 (0.81) 1.00 (0.95) 17%

CDBIC 0.12 4.73 (0.80) 0.64 (0.78)

250 1 0.1 E-MS 0.53 6.00 (0.00) 0.66 (0.87) 85%

IMBIC 0.21 5.90 (0.70) 1.03 (0.76) 34%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

500 1 1 E-MS 0.57 6.00 (0.00) 0.60 (0.82) 85%

IMBIC 0.38 5.99 (0.10) 0.79 (0.80) 57%

CDBIC 0.67 6.00 (0.00) 0.46 (0.72)

Table A.8: Estimation of θ in Backcross Experiment

n Method Bias2 (10−8) Variance (10−5) MSE (10−5)

100 E-MS 162 6.89 7.05

CDBIC 90.6 6.33 6.42

250 E-MS 14.0 3.24 3.25

CDBIC 8.48 2.81 2.81

500 E-MS 2.92 1.48 1.48

CDBIC 2.07 1.28 1.28
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Table A.9: Estimation of σ2 in Backcross Experiment

n β σ Method Bias2 Variance MSE

100 1 1 E-MS 2.0 × 10−2 3.15 × 10−2 5.15 × 10−2

CDBIC 3.15 × 10−3 2.07 × 10−2 2.38 × 10−2

250 0.5 1.0 E-MS 9.40 × 10−4 9.54 × 10−3 10.50 × 10−3

CDBIC 8.23 × 10−6 8.92 × 10−3 8.93 × 10−3

250 1.0 1.0 E-MS 11.2 × 10−4 9.86 × 10−3 10.98 × 10−3

CDBIC 2.72 × 10−5 8.62 × 10−3 8.64 × 10−3

250 1.0 0.1 E-MS 8.17 × 10−3 8.85 × 10−7 8.16 × 10−3

CDBIC 8.11 × 10−3 8.62 × 10−7 8.11 × 10−3

500 1.0 1.0 E-MS 8.22 × 10−4 3.90 × 10−3 4.73 × 10−3

CDBIC 1.08 × 10−4 3.58 × 10−3 3.69 × 10−3

A.7 Analysis of protein data

Table A.10: E-MS Results for Grain Protein
Chromosome Marker ID# Chromosome Marker ID#

1 12 13 5 280 285 332 333

2 65 66 6 379 380

3 184 186 199 200 7 467 470

4 176

Additional References:

Efron, B. and Tibshirani, R. (2007), On testing the significance of sets of genes,Ann.

Appl. Statist. 1, 107-129.

Jiang, J. (2000), A nonlinear Gauss-Seidel algorithm for inference about GLMM,Com-

putational Statist. 15, 220-241.

Jiang, J. (2010),Large Sample Techniques for Statistics, Springer, New York.

Jiang, J. and Rao, J. S. (2003), Consistent procedures for mixed linear model selection,

Sankhya 65 A, 23-42.



Appendix to E-MS Algorithm 30

Luenberger, D. G. (1984),Linear and Nonlinear Programming, Addison-Wesley, Read-

ing, MA.

Mou, J. (2012), Two-stage fence methods in selecting covariates and covariance for

longitudinal data, Ph. D. dissertation, Dept. of Statist.,Univ. of Calif., Davis, CA.

Nguyen, T. and Jiang, J. (2012), Restricted fence method forcovariate selection in

longitudinal data analysis,Biostatistics 13, 303-314.

Wu, C. F. J. (1983), On the convergence properties of the EM algorithm,Ann. Statist.

11, 95-103.


