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Throughout this Supplementary Material, the paper, “ThBl&-Algorithm: Model
Selection with Incomplete Data” by Jiang, Nguyen & Rao, femed to as JNR.

A.1 Convergence and consistency of E-MS

In this section, we provide detailed results regarding thevergence and consistency
of E-MS, reported in Section 4 of JNR, and their extensions.

First we would like to point out a key idea for the proof of timei(nerical) convergence,
which is based on a well-known result in numerical analygi®wn as theglobal conver-
gence theorem (GCT). First introduce a few terms in numerical analysis. agorithm is
defined as a map, that assigns to every pointc X a subset(z) C X. In particular,
a(x) may consist of a single point, in which case the definition ofap is consistent the
traditional concept. To see an example, supposedtgtis defined as the solution(s),
to the equatiory(z,y) = 0. Givenz, if the solution is unique, thea(z) is a single point;
if the solutions exist but are not unique, the) is a subset; and, if the solution does not
exist, them(z) = (). Operated iteratively, the algorithm initiatedigte X would generate

a sequence;,, k =0,1,2,..., defined by
Tp41 € a(xk) (Al)

The mapa is said to be closed at€ X if z, — x, 2, € X andy, — vy, yx € a(zy) iIMply
y € a(z). The algorithm defined by is said to converge globally if, with any initial point
xo, the sequence,, k = 1,2,... converges to the same poirit € X.

Global Convergence Theorem (e.g., Luenberger 1984). Suppose that the sequence

IS generated by an algorithmvia (A.1), and there is a continuous functiagn,such that
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the following conditions (a)—(c) hold. Then, the limit ofyaconvergent subsequence:gf

must be a solution to the following optimization problem:
minimize ¢(z) subject to z € X. (A.2)

(a) all points ofz;, are contained in a compact subset X; (b) a is closed at any: that is
not a solution to (A.2); (c) if: is not a solution to (A.2), theg(y) < g(x) forall y € a(z),
and if x is a solution to (A.2), thep(y) < g(x) forall y € a(x).

The GCT was used in the proof of the convergence of the E-Mrighgo (Wu 1983).
Also see, for example, Jiang (2000) for another applicadicthe GCT. In Wu (1983), the
inequalities in (c) are reversed because, therein, th@aatmsidered maximum likelihood.
Clearly, this is equivalent to our version of (c) if, inste§#l.2) is considered. Among the
three conditions, the key is to show (c), because the rebeafdanditions are relatively easy
to verify, or reasonable to assume (such as the compacthmspgarameter/model space).
Thus, we will focus on condition (c). Also note that, typigathe strictinequality<, in (c)
holds under some regularity conditions that rule out sommticases, once the inequality
< or, in other words, the monotonic property @fis established. It should also be noted
that, in numerical analysis, convergence of an algorithreaghed if the distance between
the current point and the updated one is less than a threstailts set up in advance (e.g.,
107%). However, if the model space is discrete, the thresholdlitiom is met if and only
if the updated model is identical to the current model; anduge this as the definition of
convergence in an iterative model selection procedure.

To verify the key condition (c) of the GCT, it essentially ammés to show that there is
a function,g, so thatg(M Y 9t+1)) < g(M® 9®), For example, in the E-M algorithm,
g is the negative log-likelihood, which satisfigg‘+1) < ¢(6®). But now we have to
find ag that involves not just, but alsoM. Recall the observed version of (10) of INR,
introduced three lines below (12) of INR, whé}gis some observed version @f A key
condition for Theorem 1 of JNR is assumpti8B. This condition may be interpreted as

that the expected difference in the measure of lack-of-fiemthe correct model is no more
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than that under an incorrect model. We illustrate with some®les (the numbering of
the examples follows the sequence of JNR).

Example 4 (negative log-likelihood). ConsiderQ (M, 0,Y) = —log faro(Y') and define
Qo(M,0,y,) = —log fare(yo), Where faro(y) and fa6(y,) are the pdfs oft” and Yy,
respectively, with respect to sonaefinite measure’, underM andf. Then, we have
QM. 0,Y) — Qo(M,0,y,) = —log{ fare(Y)/ [ar0(Yo)} = —10g fare(Ym|yo), whereYy,
denotes the vector of missing data. It follows that
B{Q(M,0,Y) = Qo(M. 0, yo)lyo, M, 0} — E{Q(M, 0,Y) — Qo(M, 0, y) |y, M. 0}
= [{log fare(Yml|Yo) } Far6(Ymlyo)dv — [{10g fy7 5(ymlYo) } Far.6(Ym|yo)dv
= — [log{ fi1.5(Wmlvo)/ frr.oYmlyo) } Far.6 (Yumlyo) dv

> — log f{fM,é(ym‘y())/fMﬁ(ym‘yo)}fM,Q(ym‘y())dV =0,
using Jensen'’s inequality. Thus3 of JNR is satisfied.

Example 5. Consider selecting the covariates in a linear regress$ios, x5 + €;,1 =
1,...,n, where the errors; are independent with med@rand variance2. The components
of z; are subject to selection, with being the corresponding vector of regression coeffi-
cients. Assume, for simplicity, that® is known, and that na;,’s are missing. Thus, we
can treat the;;’s as fixed, and drop them from the condition in the conditi@xpectation.
Here, a modelM/ corresponds to a set of specified covariate®ndd = 5. Suppose that
Y1,,---,Ym are observed, whilg,, .1, ..., y, are missing. As in Example 1, we consider
MAR for simplicity. Let Q(M, 0, y) = Q(z, 3,y) = >0, (yi — 256)% + 6o > r (vi —

7' 3)?, whered, is positive and¥(y,) measurable, and, natually, considgy(z, 3,v,) =
S (g — 23)% Then, we hav&{Q(z, 5,Y)lyo 2, B} = Y0 (ys — #0)% + dof(n —
m)o® + 3, (#46 — #0)*}. Thus, we hav&{Q(Z, 3,Y) — Qo(%, 5, yo)lyo, z, B} =
dof(n —m)o® + 31, (218 — 73)°}, henceE{Q(x, 5,Y) — Qo(x, B, yo) Yo, 7, B} =
do(n — m)o?. It follows thatA3 of JNR is satisfied.

Proof of Theorem 1:

We verify conditions (a)—(c) of GCT. Note that here= v, andX = W; the algorithm
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a is defined below (12) and repeatedAd of INR.
Condition (a) clearly holds undéyl.
For condition (b), let)®) € a(y®). Suppose thap® — v, andy)® — 1)y, ast — co.

We know that, for any) € ¥, we have

E{Q(¢Y,Y)yo, v} + p(MYW) < E{Q(,Y)|yo, ¥} + p(M) (A.3)

[definition ofy(¥]. On the other hand, whetis large, we havé/® = M, andM® = M.
This is becaus®! is a discrete space, i.e., the ID numbers of the candidatelsalich as

1,2,..., K. Thus, when is large, the left side of (A.3) is equal to

E{Q(qu)Ov Y)‘ym 77Z)0} + p(MO) + E{Q('&Ov Y)‘ym MO: e(t)} - E{Q('&Ov Y)‘ym M07 00}
+E{Q(My,09,Y) — Q(My, 0y, Y) |y, My, 6V}

The last two differences of the above expression go to zeA2by¥n the other hand, when

t is large, the right side of (A.3) is equal to

E{Q(v,Y)|yo, Yo} + p(M) + B{Q(),Y)|yo, My, 0} — E{Q (¢, Y)|yo, Mo, 6o}

Again, the last difference of the above expression goesrio lzg A2. Thus, by letting

t — oo on both sides of (A.3), we g&H{Q(¢o, Y)[yo, Yo} +p(Mo) < E{Q(¥,Y)[yo, to}+
p(M), for anyy) € W. Therefore, by the definition af, we have), € a(v).
For condition (c), we havg(Mt+D gt+1) 4 ) =

= B{Q(M® 00 Y) 4 p(M ) [yo, MO, 61}
+E{Q0(M(t+1),‘9(t+l),yo) —Q(M (t+1) Q(t+1) V) |o, M® g t)}
< B{QMY,09Y) +p(MY)|y,, MY, 9V}

+E{QO<M“>,9<”,%>—Q(M@,e(t V) |yo, MY 61}

= g(M® 91 ). The inequality above is due #8 of INR and the definition o+,

6+ Also note that\/) andd® are functions ofj,, conditional on which)/®) §® are
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considered as fixed models and parameters for everiis proves the second part of (c).
As for the first part, ifiy; € ¥\ Uy, then, byAd of INR,; ¢ ;. Lett)y € a(¢). Be-

cause); ¢ a(yr), we havel{Q(v1,Y)|yo, 1} +p(My) > mingew [E{Q (¥, Y)[yo, Y1} +
p(M)] = E{Q(¢1,Y)|yo, 11} + p(M;). Thus, combined wittA3 of INR, we have

9(h1,90) = Qolthr, yo) + p(M))
= B{Q1.Y)lyo: 1} + p(M1) + B{Qo(t1, 50) = Q(1, Y)lyor 1}
< E{Q(¢1,Y)|yo, 1} + p(M1) + E{Qo(¢1, o) — Q(¥1,Y)[yo, ¢1 }
= Qo(¥1,Yo) + (M)

= 9(¥1, o)

Thus, we have verified conditions (a)—(c) of GCT. Furthemmbiy A5, the solution to
mingey 9(¢, yo) iS Unique; therefore, the limit of any convergent subseqaeiy® + =
0,1,2,... is the same, hence the entire sequence converges and thddasinot depend
on the initial point. In other words® ¢t = 0,1,2, ... converges globally. i

Before proving Theorem 2, we interpret the additional agstions, A6 andA7 of INR.

A nice feature of the latter is that they are very much the samthose required for the
consistency of the GIC with the complete data (e.g., Jianga& R003). Intuitively, as-
sumptionA6 states that, w.p- 1, an underfit model has a larger measure of lack-of-fit,
and the difference in the measure of lack-of-fit is of higheteo than that in the penalty;
assumptiorA7 states that, w.p- 1, the difference in the penalty between an overfit model
and the optimal model dominates the that in the measure kfd&aét between these two
models. These assumptions, of course, make sense. Agailfysteate with an example.

Example 5 (continued). In this case, we hav@,(M, 0, y,) = Qo(z,5,v.) = |yo —
XoB[?, wherey, = (y:)i1<i<m and X, = (27)1<i<m, andp(M) = A,dim(3). Letz;, j =
1,...,pbe the candidate variables. We make the classical assumptiongitiebounded,
and that the true variables are a subset of the candidatblesi Let)M,,, = {1 < j <

p, B # 0}, wheref ; is thejth true coefficient under the full model. Thek/, is the
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optimal model. A model/ corresponds to a subset{df, ..., p}; M € M, iff My, € M,
andM € M, iff Moy C M (i.e., Mope € M, My # M).

If M € M,, we haveQ,(M,Y,) = Y/Px.Y, = |a|* + 2d'e + ¢ Py.¢, Wherea =
Py 1 Xo optBopts With X, o and 3,,; being the X, corresponding tal/.,; and the trues
corresponding taX, ., respectively. On the other hand, we haWe( My, Oopt, Yo) =
€'e = € Pxie+ €Px,e. Thus,Qo(M,Y,) > Qo(Mopt, Oopt, Yo) iff |a]? + 2a'e > € Px_e.
However, it is easy to show thate = Op(|a|) and€e'Px e = Op(r) with r = rank(X,).
Thus, provided thdtz| — oo asn — oo, A6 of INR is is satisfied.

If M € M,, thenLl(X,.pt) C L(X,), whereL(H) denotes the linear space spanned
by the columns of matri¥/, andA = dim(3) — dim(G,,t) > 0, wheregs corresponds to
X,. It follows that Py, — Px,,,, is a projection matrix. Thus, we havg, (M, Y,) —
Qo(M,Y,) = YJ(PXO{M — Px1)Y, = EI(PXO{OPt — Pxi)e = €(Px, — Px,,, )€ = o’Xa,
wherey? has they? distribution with A degrees of freedom (e.g., Jiang 2007, p. 238). It
follows thatA7 of JNR is satisfies as long ag — oo, asn — oo.

Proof of Theorem 2:

Let (M, 0y) denote the limit of the E-MS convergence. According to GAW the
proof of Theorem 1My, 6,) must be a minimizer ofj(M, 6, y,). Defineg(M,y,) =
infpeo,, 9(M,0,y,). Then, itis easy to show that My, 6y, v,) = g(Mo, o).

Consider the evertM, = M }. If M € M, by A6 of INR, we have

g(M07 ‘907 }/o) - g(Mopta ‘gopta }/o>
= g(Mo, YE)) - g(Mopta eop‘w Yé)
= QO(MO?}/;))+p(MO) Qo( opt s 0pt>Y:))_p(Mopt)
p(Mo) — p(Mopt) }
- o M, o o opt Opta}/;)
{Q ( ’ ) Q ( )} {1+ Q (Mo, o) Qo( opts opt;YZ))

p(M) — p(Mopt) }
Qo(MaY;)) Qo( opty 0pt>Y:)) ’

which is positive w.p— 1. Therefore, w.p— 1, M, cannot beV/, that is,P(My = M) —
0. On the other hand, it/ € M,, by A7 of INR, we have, w.p= 1, p(My) — p(Mopt) =

= {QO(M>Y) Qo( opts Opt;%)}{l‘i‘
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p(M) = p(Mops) > Qo(Mops, Yo) — Qo(M, Y,) = Qo(Mops, Yo) — Qo(Mo, Ys); therefore,
there ifop; € O, sUch thap(My) — p(Mopi) > Qo Mopt, Oopt, Yo) — Qo( Mo, 0o, Ys), OF
g(Moy, 00,Y5) > g(Mopt, éopt, Y,), which contradicts the minimization property @/, 6,)
as noted above. Thus, again, w1, M, cannot bel, that is,P(M, = M) — 0. The
arguments, an@5 of INR, have shown that(1, = My,) — 1. 1

Next, we extend the convergence and consistency resultstticAk. To be specific,
assume that the minimum-dimension criterion is used tact#ie model within the fence
(e.g., Jiang 2014). Again, assume the existenc&/gf € M. Also assume that model-
based (or parametric) bootstrap is used in the AF procedittethe bootstrap sample size
B. Let M® be the current model. We assume that, given a model, the oheflparameter
estimation is determined (e.g., maximum likelihood witke t8-M algorithm), so that we
can simply use”*(-| M) for the bootstrap empirical probability under modél Let A7®
be the current model. Then, for any cut-oimong a grid of value$, the updated model,
MY - is such that, for some* € C, P*{M.. = M| M"Y} = maxy;ep P { M =
M|M®} = max.ce maxyen P*{M. = M|M®}, whereM. is the model selected by the
fence for the cut-oft. Note thatC is usually chosen so that the fence does not yield a trivial
solution, that is, the minimum model/,, or the full model,M;. The following theorem
assumes consistency of the AF, for which sufficient condgiare given, e.g., in Jiarej
al. (2008) (again, the numbering of the theorems follows theisege of JINR).

Theorem 3. Provided that the AF is consistent when bootstrapping ueitleer M or
Moy, asn, B — oo, then, w.p— 1 asn, B — oo, the E-MS with AF converges within
two iterations when starting with/;. Furthermore, the limit of the convergenceli§,; in
other words, the E-MS with AF is consistent.

A nice feature of Theorem 3 is that it links the convergenc&-dS with AF to the
consistency of AF, and shows that the convergence can bdasgir{in two iterations) with
the limit being the optimal model. In our simulation studgésSubsection A.6.1), the E-

MS with AF converges in 2-3 iterations in all of our simulaticuns. On the other hand,
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unlike Theorem 1, the convergence in Theorem 3 is not glddeglause the starting model
is assumed to b&/;. In fact, as is seen in the proof below, the GCT is not usederptiof
of Theorem 3. The starting model may be replaced by any ategfinodel, but not by an
arbitrary one.

Proof: Let P denote the joint probability distribution of the data andtstrap sam-
ples. Then, we hav@{M® = M, |M® = M;} — 1, asn, B — oc. Also note that,
given M, the outcome of\/® does not depend of/®. Thus, we haveP{M? =
Mope| MY = Moy, MO = My} = P{M® = My |[MY = M} — 1, asn, B —
co. Therefore, we hav@{E-MS converges in 2 iteration/ © = M;} > P{M?) =
M(1)|M(0) = M} > fp{]\/[(2) — Mopt,M(l) — Mopt|M(0) = My} = jJ{M(l) —
M| M@ = Me3P{M P = M| MY = My, M© = M;} — 1, asn, B — oo,

Also note that the E-MS stops whenevei**!) = M (®) takes place, in which case
the M1 is the limit of convergence. Thus, we ha®éthe E-MS limit is M, | M =
M} > P{M® = My, MY = M, |[M©® = M;} — 1, asn, B — oo, according to
the previous argument, i#/; # M,,.. On the other hand, il/; = M., then, again by
the previous argument, we hagthe E-MS limit is M, | M = M;} > P{MY =
M| M@ = M,;} — 1, asn, B — oo. This proves the consistencyll

A modification of the E-MS with AF, however, can actually amhe the global conver-
gence. This is done by restricting the model spac@fér") to be submodels af/*). This
is not unreasonable because the bootstrap samples areweerd/ "), which would sug-
gest that\/(*) is believed to be a true model; therefore, there is no neambtofbr anything
beyond the submodels af ). The modified E-MS with AF is also computationally more
attractive, because the model space shrinks with eachiaeraAs for the convergence
property, we have the following result.

Theorem 4. If M is finite, then the modified E-MS with AF converges globally.

Proof: If the convergence is not achieve, then each time the updagetiue sub-

model. As the iteration goes on, this would generate a sguehoon-repeating models
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MO MM Then, becausdl is finite, the sequence cannot go on forever, so, at some
point, the convergence has to take place, and this is rezgmrdf the starting moddl.
A.2 Example

We verify the condition®\1-A5 for Example 5 in the previous subsection. Wedgt
unspecified, for now, and determine it later. Hére = x, andf,, = [, the vector of
regression coefficients corresponding:tar hus,Al is satisfied if the number of candidate
predictors is finite, and the range of any regression coeffiags bounded.

For A2, itis easy to show that{Q(z1, 1, Y) — Q(z1, 51, Y)Y, 70, Bo } = S1, di +
80 Dy di Whered; = [z, (B1+51)—2{yi1(i < m)+af, ;501 (i>m) }7h (51— 51), which
goes to zero as; — 3;,j = 0, 1. Furthermore, we havé{Q (1, 51, Y)|o, T, fo} =

Z(yi —x1,61)% + o {(n —m)o? + Z (376150 - xll,iﬂl)Q} )

=1 i=m-+1
and E{Q(z1, 51, Y)|vo, x0, o} has the same expression with replaced byj3,. Thus,
E{Q(z1, 81,Y)Yo, 20, Bo} — E{Q(x1, 81,Y)|yo, x0, Bo} @SB — Bj,j =0, 1.

A3 holds according to Example 5.

For A5, we assume, for simplicity, that all the columns are linearly independent,
so that| M| = #col(x), where#col(x) is the number of columns im, andp(M) =
A|M|, where) is a penalty parameter. Then, we halig= argmin, g {|yo — X(1)5]* +
A#col(z)}, wherey, = (yi)i<i<m and Xy = (2})1<i<m. Thus,A5 says that there is a
uniqueyy, = (zo, fy) that minimizesy(v)) = |y, — X(1)5]* + Aftcol(z) for all ¢ = (z, 3).
To see what this means, note that, for fixedthe minimum ofg(¢)) over g is G(z) =
\Pxé)yo\z + M#col(z), wherePy. = [ — Px with Px = X (X'X)~'X". Thus,g(v) has
a unigque minimizer), if and only if G(z) has a unique minimizetr,, in which casej, is
the least squares (LS) solution correspondinggta.e., 5y = {X67(1)X0,(1)}_1X67(1)y0-

As for A4, suppose that; = (z1, 41) # 1. We consider two cases.



Appendix to E-MS Algorithm 10
Casel B # {X] )X1,0)} ' X] (1)%. Consider the minimizer of

E{Q(z1,8,Y)|yo, x1, b1} + A#tcol(21)

= |yo — X187 + do{(n — m)o® + | X1 201 — X128/} + Acol(a)
over 3, whereX o) = (2)m41<i<n- It can be shown that the solution is
B = {X1 )X + X1 o Xu@ XL )% + X1 2 X101}

We can assume that, with probability tending to one, all tBesblutions are within a com-
pact parameter space (the compact space may expand witartiptessize), which holds
under the standard assumptions3{f= £, it follows that3, = {X XL X (1 Yor

a contradiction. Thus, we must have # Bl, hence

E{Q(z1, 8,Y)|Yo, 1, B1} + Aol (z1)] 5_5,

< E{Q(x1767y)‘y07$1761} +>\#COI(‘T1)‘,8:,617

which implies that); ¢ a(i).
Case ll #1 = {X] ;,X1,01)} ' X] ;Yo Then, we have

[Pyt Vol + Adtcol(zo) = g(th) < g(v1) = [Py wol” + Mbcol(zr).  (A4)
Let A(x,) denote the difference between the right side of (A.4) andetiside, and
D(z1) = |[X1,{ X1 0 X1} X1 0y — Xo,o {X0,0Xo,0)} " X0,0)]%l

Then, we have

E{Q(ZL’(), 607 Y)‘y07 xy, ﬁl} + A#COI(ZEO)
= |Pxy, tol” + Agfcol(wo) + do{(n — m)o® + | X1,2)0 — Ko@)}
= ‘Pxi<1)y0|2 + A#tcol(zy) + do(n — m)o? — A(zy) + 6 D(z1)

< ‘PXi(l)yOF + A#tcol(z1) + do(n — m)o? — min A(x;) + dp max D(z).

T17£T0 T17£T0
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Thus, if we take)y = {min,, +,, A(z1) }{2max,, ., D(z1)} "', which is positive byA5,

then, continuing on, we have

E{Q (w0, 5o, Y)|yo, x1, B1} + Agfcol(wo)

1
- |PX1¢(1)y0\2 + Aftcol(x1) + dg(n — m)o? — = min A(wy)

T1#£T0

< |PX1¢(1)y0\2 + AMtcol(zy) + do(n — m)o®

- E{Q(‘rh 617 y)|y07 X, 61} + A#COI(ZEI)‘

Therefore, again, we havg ¢ a(v).
A.3 TheFW/BW BIC

We explain the FW/BW BIC procedure (Browman & Speed 2002ygisin example.
Suppose that there are 30 candidate variables. First catrthe forward selection by
selecting the first variable;), that minimizesRSS(y, X) = ming RSS(y, X, 3), where

n

RSS(y, X, ) = Z(yz — i)

=1

with X = (2})1<,<,, Over allX that consists of a single column of next, we select the
second variabley®, that minimizesRSS(y, X) over all X that consists of two columns
of z, with the first column being:™") (so the selection is for the second column only);
we then select the third variable(®, that minimizesRSS(y, X) over all X that consists
of three columns, with the first two columns being’, z(® (so the selection is for the
third columm only), and so on. The forward selection corgmuntil 50% of the vari-
ables are selected. Thus, we hay®, ..., =) after the forward selection. We then
follow with a backward elimination by taking out the first \a&ble, z(;), from the 15 vari-
ables, that minimizeRSS(y, {z, ..., 2(*» without x}) overz € {z ... z(19}; we
then take out the second variablg;), from the remaining 14 variables, that minimizes
RSS(y, {zW, ..., 219 without z(1y and z}) overz € {zM, ... 219} \ {z()}; and so
on. The backward elimination continues until all 15 varesbare taken out. We then ap-

ply the BIC to the following reduced model space generatethby-W/BW procedure:
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M, = {2W}, My = {a® @Y My = {2W, .. 209}, Mg = {=® ... 291\
{zmy}, .oy Mag = {zW, .. 2B\ {zqy, ..., 2}
A.4 Somederivationsin Section 3
A.4.1 Somedetailsregarding Example 2

We first derive the conditional expectations of BIC and RS8eurthe current model,
M.. Note thatd is involved only inl,, hence, the MLE of) involves only ther data.
Therefore, we first update the estimateddfased on the data. Letd. denote the current

estimate. Then, we have, by independence,
Ec(lx|ro) o< nr(qg — 1)log(1 — ) 4+ {log§ — log(1 — 6)} Z Ec{s(X:)|oi}s
=1

whereX; = (Xijk)i1<j<gi<k<r S(Xi) = > 1y Z?:(xijk + Tijrik — 2TijTiji1k) = H
of cases among;, 1 < k <r,1 < j < ¢ —1suchthatz;, — ;1% = 1, E. means
(conditional) expectation under the current estimated,2an denotes all of the observed
x's amongz;;x, 1 < j < ¢,1 < k < r. Similarly, letz,, ; denote all of the missing’s
amongz;;x, 1 < j <gq,1 <k <r. Let f. denote the (conditional) pmf, or pdf, under the
current estimates. It can be shown that

R ~ s(zs)
(1 —6)rte) 0,
c\Ti) = ~ )
ey = == (e

Wherel‘i = (xijk)1§j§q71§kgr. ThUS, we havqc(xmﬂwo’i) = fc(l'l)/ me’i fc(xz) =

A s A8 whered, = 0./(1 — 6.), andy", is over all the missing’s among

zijk, 1 < j <g¢q,1 <k <r (each taking the value ofor 1). It follows that
S, 83

> 4
Thus, it is easy to obtain the updated for thestimate as

LT s
nr(qg—1) — me:yg(xi) :

Ec{s(Xi)‘xo,i} =

é:

As a comparison, note that the MLE @based on all of the’sis > | s(z;)/nr(qg — 1).
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Now assume that the MLE has been obtained via the E-M algorithm. To evaluate the

conditional expectations, we need to obt@itv., ;, Tm | Yo, To.i). NOte that

fc(yi, xl) _ fc(yl‘xl)fc(xz)
fc (yo,ia xo,i) fc(yo,ia xo,i)

fc(ym,ia xm,i‘yo,ia xo,i) -

Y

and f.(y;|z;) = (2762) Y2 exp{—(y; — x;iBfC)Q/%f}. If y; is observed, then, we have
fc(yo,ia xo,i) - mel fc(yia xl) - me g fc(yz‘xz)fc(xz) ThUS, we have

o fc(yz“xl)fc(xz)
Feltms Emilois Toi) =S~ O o)

exp{—(262)7 (y; — o} ;6r.0)*}7°)

Y, XD{—(262) "L (yi — 2 B.0) 1450

whered = /(1 — 6) (note thaty does not change with the iteration). Define
exp{—(262)" (y; — a,,5.)*}7*@)

me,i eXp{_(2&2)il(yl o xlc,iBC)Q}ﬁys(xi) ,
and wy,i(z;) = 47/ %,  4°@). 1t can be shown thaE.{RSS(Y, X, 3)|yo, 7o} =
NmG; + Zielo me o Wo (i i) (yi — i 3)? + Zielm me ; Wm (i) (g ch — ;3)?, where
E. represents the conditional expectation untier x. ; is thex; under)/; 50, are the

wo,i(yia JUZ) =

current estimators undé,; I, = {1 < i < n :y; isobservedl, I, = {1 <i < n:y;
is missing, andn,, = |I,,| (cardinality). Note that, liké, w,, ; does not change with the

iterations. Thus, by differentiating and letting the dative equal td), we get

-1
B = Z Z Wo,i (Yi, ) iy + Z Z Wiy i (2;) 24,

iEIo Tm,i ’LEIm Tm,i
! 2.
E E wo,z‘(yz‘,ﬂﬁi)ﬂﬁz‘yri- E E wm,i(xi)xixc,i Bel s
€16 Tm,i 1€1Im Tm,i

andRSS.(M|y,, ¥,) = ming E{RSS(Y, X, 8)|yo, 7o }
D OXP{=(208) 7 (9 — 2B} (3 — 23
& T ool 7B

+Z a:mz ( C’L/BC 16) .

~s(x4)
i€1m $m,i R
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An expression proportional 8. (/xy|x |v., T,) can be obtained similarly. It follows that
By = [3 above withz; replaced byzy,;, andé? = n {3, S, woi(yi, 7:)(yi —

x/JVI,iB]W)Q TG+ D e D wm,i(xi)(x'c,iﬁc - x/M,iBM)Q}' It follows that

BIC.(M|yo, 7o) o< nlog{ nm,o> + Z Zwoyi(yi, zi)(y; — xﬁVLZﬂAM)Q

1€16 Tm,i
+ 3w (@B — 2y, Bu) p + M| log(n).
1€1m Tm,i

A.4.2 Somedetailsregarding Example 3

We derive the conditional expectation assuming that theeatmodel isV/;. The same
derivation applies to any current modél,., with only notational changes. L&k denote
the conditional expectation undéf; and the current estimates of parameters, unidger
including 3¢, o2, p,, 7,1 < r < s, andQ. Lety,,z, denote the observeg z, respec-
tively. Similarly, lety,,, T, xcm, andz,,, denote the missing parts of x, z., andxg,
respectively. Although it is possible to obtain the coratiil densityfy; (ym, Tm|yo, To),
the result is not a common distribution (e.g., normal), unakich the conditional ex-
pectations can be easily obtained analytically. Alten@dyi one may consider sampling
from the conditional distribution, and use the Monte Carletimod to compute the condi-
tional expectations. To do so, first note that it is easy tostiat one can sample from
the joint conditional distribution by sampling indepentlgrirom the conditional distri-

bution for each subject. To sample from the subject conaiaistribution, note that
fM,i(yi,m>xi,m|yi,o>-Ti,o) X fM,i(yia ;) o

S ! - (yi — i arPu)°
exp [Z | Eap— {log T, — é(xzc ) (e — Mr)} - 20’2

r=1

, (A5)

whereocc means that the expression is up to a functiog; of z; ,, which is considered con-
stant during the sampling of ,,, z; ,. Next, we employ the Metropolized independence
sampler (MIS, e.g., Liu 2004, p. 115), which is a special azdbe Metropolis-Hastings
algorithm, as follows. Write: = (y; m, z;m), @and f(z) = the right side of (A.5) (note that
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Yio, Ti,o @re held fix iny;, z;). Given the current stateé?), (a) drawz ~ g(z), whereg(-)
is atrial density whose expression is known, up to a constant, and from whietkapows

how to sample; (b) simulate ~ Uniform[0, 1] and let

z, if w < min{l,w(z)/w(z")},
. < min{1, w(=)/w (=)}

2 otherwise,

wherew(z) = f(z)/g(2) is theimportance sampling weight. The algorithm generates
a Markov chain that converges (in distribution) to its staéry distribution, which is the
target distribution on the left side of (A.5).

It remains to choose the trial densigy Let z = (2 4m, Zicm, Yim), Where, for the
moment, assume that all three componentsafe non-empty. We proceed as follows:

() Firstdrawz; 4, from f(x; am|zia,0). Note that, given the missing value pattern for
x;, each vectow, is partitioned as, ; , andv,; ,,, with the notation being understood in
obvious ways. Then, given, 4, = v,.; ., the possible values aof, 4, arev;; ,,1 <7 <'s
such thaw;; , = v,.; .. In other words, defin&(v) = {1 <7 < s:v;;, = v}. Then, the
possible values of; 4, arev;;m, ™ € R(v,;,). Also, for anyr € R(v,,,), we have

P(iﬂi,d,m = VU i,m, LTido = UF,i,o)
P Tido = Ur,i,o)

P(Ziam = Vrim|Tido = Urio) = = cP(xiq = v7),

wherec does not depend o By summing over € R(v,;,) and noting thaP(z; 4 =

vi) = 7, by assumption (ii), we get= {>". 5, . 7} . It follows that

Ur,i,

T

, (A.6)

P(xi,d,m - Uf,i,m|xi,d,o - Ur,i,o) - Z T
r"€R(vri0) T

7 € R(v,;,0). The conditional density (z; 4.m|7:.4,) IS given by the right side of (A.6) with
Ui replaced byr; 4 , andr being ther € R(z;4,) such thaw; ; , = x; 4. The sample
x;am 1S drawn from the conditional distribution such that it hke probability given by
(A.6), with v,.; , replaced byr; 4 ., Of taking the value;; ., 7 € R(x;q,).

(I1) Next, note that, by assumption (iii), we havg .|x; 4 ~ N(u., €2), wherer is such
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thatz; 4 = v,. Write Q = (wi)1<k,1<p- Then, we have

Xi,c,m ,Ur,i,m Qi,mm Qi,mo
Tid N ) ;
Xi,c,o Hrio Qz',om Qz',oo
_ _ _ / _
WhereQi,mm - (wkl)kz,IESi,C,ma Qi,mo - (wkl)k’ESi,C,m,lesi_’c?oa Qi,om - Qi,moa anin,oo -

(Wki)ktesico With 850 = {1 < k < p @ 2 observed} (z;. is thekth component of

zic)ands; ., = {1,...,p}\ sico. It follows (e.g., Jiang 2007, Appendix C.1), that
Xi,c,m‘xi,c,m xi,d ~ N{Nr,i,m + Qi,moQZ‘;}O (xi,c,o - ,ur,z’,o)a Qz',mm - Qi,moQ;oloQi,om}' (A7)

Denote the mean vector and covariance matrix of the muléteanormal distribution on
the right side of (A.7) by, ; c.m and<2; . .,, respectively. Then, we have

1

f(wi,c,m|wi,c,oa xi,d) X exp __(xi,c,m - Mr,i,c,m),Qi_Clm(xi,c,m - ,Ur,i,c,m) )
2 Gy

wherer is such thatr; 4 = v,.

(1) Finally, by assumption (iv), we havi, ,|z; ~ N(x} 0., 07), hence

(yi,m - x;,M6M>2 }

Sar(Yim| @) o< exp {— 597

In conclusion, we can choose (after dropping a constanfterm

. 1
g(Z) = t €Xp {__(xi,c,m - Mr,i,c,m)/Q;ém(xi,c,m - ,Ur,i,c,m)
ZT/GR(xi’d_’O) Ty 2

(Yim — T 0 B0)” }

202

wherer is such that” € R(z;q,) andv;;, = x;am, andr is such thats; 4 = v,. The
sampling fromg consists of three steps: (I) draw, ., from the distribution that has the
probability equal tmf{zr/eR(:ci,d,a m} ! of taking the valuey;; ., for 7 € R(z;q4,); (I)
giventher; 4, drawn, drawe; . ,, from the multivariate normal distribution in (A.7), where
ris such thaty; ¢ = v,; (Ill) given the x; g i, T c,m drawn, drawy; ., from N (2} ,, 8, a?).

If any of the components; 4, Zicm, OF ¥;.m are empty, we simply skip the corre-

sponding step(s) (I, II, or IlI).
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A5 Somederivationsin Section 6
A.5.1 Derivation of (16)

First note that

{Yi — Enoy, (Yi)}Ql(Mind,z:O) = (Yi— Ci)21(Mind,i=0)
+2(}/Z — Cz’){ci - EM,QM (}/’i)}]‘(Mind,i:O)
+{Ci - E]W,QM (Y;)}Q

= &+ 20+ G,
wherec; is defined in INR [above (16)]. We have
E(Uz) = {Ci - EM#Q]\/I (K)}[E{Kl(]wind,i:o)} - CiP(Mind,i = 0)]

= {¢ = By, (V) }HE{Y:A(Y:)} — ¢:E{A(Y)}]

= 0.

Thus, by the law of large numbers (LLN), we hay&" | n; = op(n) (e.g., Jiang 2010, ch.
3). It follows that

Z{Y; - EM,GM (Y;) }21(Mind,i=0)
=1

n

= Z(YZ - Ci)21(Mind,i=0) + Z{Cl — Enon (}/;')}21(Mind,i:0) +9

=1 =1

= > {ci = By () 1t =0) + 01,
=1

wherer is a lower-order term, and is a sum of a term that is not model-dependent and a

lower-order term. Similarly, it can be shown that
D BAYi = Eaoy V)Y Lot =) = O _ABY:) = Eargy (Y1)} 1agg,=1) + 02,
i=1 i=1

where and, is a sum of a term that is not model-dependent and a lower-teda. Thus,
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by (15) of INR, we have

QM ‘ yobs Z{Cz Enr 9M )}2 1(Mind,i:0)

+ Z{E(Y;) - EM#QJ\/] (}/;)}21(Mind,i:1) + 67

where is a sum of terms that are not model-dependent and lower-¢edas. Thus,
by taking the expectation, we obtain (16) of JNR. It shouldhbé&ed that, for the above
argument to hold, some regularity conditions are neededdetisure, for example, the ex-
pectation of a lower-order term is a lower-order term.
A.5.2 Derivation of (17)

Because (16) holds for every, by letting M = M, we have

E{Ec(Qasop [ Yors) } = Z{c, Y PE{R(Y:)} + dopt, (A.8)

whered,,; consists of terms that are not model-dependent and lovaerderms. Note
that, whenM = M., Exrg,, becomeds, and the second term on the right side of (16) of
JNR disappears. By taking the difference between (16) of ahdR(A.8), we get

E{EC(QM‘YobSH - E{E (QMopt‘}/Obs)}

Z{Ci — Enro,, (Y PE{R(Y:)} + Z{E — Enre,, (YD) FE{g(Y))}

-3 e~ E)PE(H0) +4
wheres has the same meaning as in (16) of JNR. Furthermore, note that
3 {E(Y) = B () BRo(10) = o= Y (EW) = B 0)VEUOD]
WherZeCI does not depend on the MDM. Also note tHat — Enrs,, (V))}? — {E(Y;) —
Baton (V) — fes — BV = 2{c, — BODHE(Y) ~ Eage, (1)}, and
{ci = E(Y) HE®Y:) — Enre,, (V) JE{A(Y:) }
= [BYA0D) ~ BODBRODIER) ~ Burs, ()
~ Ccov¥L HYOHE(Y) ~ Buray (1))
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(recall the definition of;). The second equation in (17) thus follows.

The derivation in Subsection A.5.1, and the LLN, also shoat BYE.(Q|Yons)} —
E{E.(Qnr,.|Yobs) } is the leading term for the difference in (15) betwedrand /. The
first equation in (17) thus follows.

A.6 Additional simulation results
A.6.1 Linear regression: Comparison of different strategies

We carry out a simulation study under the following lineagression model (see Ex-
ample 3). Suppose that the candidate covariates consigtooédntinuous variables and
two indicator variables. Soy, x5 are continuous (withp = 2) andxs, x4 are indictors
(0 or1). Thus,z; = (x4, Ti2, Tiz, Tia)' With 2, . = (241, 2;2) @ndz; g = (243, 2:4)". The
distinct possible values far; 4 arev, = (0,0)', vo = (0,1)’, v3 = (1,0)’, andvy = (1,1)".
Assumption (iii) of Example 3 means that there are 1 vectorsyu, o, ps3, prg and2 x 2
covariance matrix) such that, giver; g = v,, ;. ~ N(u,,Q), r =1,2,3,4.

The simulations are run with the sample size- 100 and the true model being and
xs3. The true parameters afe = 33 = o2 = 1. The trueu, isthe same as,, r = 1,2, 3, 4;
and the true is the2 x 2 identity matrix. After the complete data is generated, we
randomly select a subset of indexes frém ..., n} for the response as well as for each
of the candidate predictors, which correspond to the ngsdata, so that00p,, % of the
data are missing for the response and each of the candidatietors. Here we consider
two casesp,, = 0.1 andp,, = 0.2.

We study the performance of E-MS with the invisible fence {ienget al. 2011b; also
see Jiang 2014), which, in this case, is equivalent to thésAfFcomputationally more effi-
cient. On the other hand, it is known that the latter may sdiftem the “dominant factor”.
Namely, although the true coefficients for the true predsg{o, andzs) are both equal to
1, it turns out that the continuous predictor is the dominantdr. Thus, with a moderate
sample size, such as in the current case, the IF tends to beknmgly select:; at dimen-

sion1, leading to a potential underfitting. To overcome such a lerabwe consider the
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following modification of the IF to make it more “aggressivd’et o be a chosen number
betweer) and1. Let d* be the selected dimension by IF agpidbe the corresponding max-
imum empirical probability (that a given model is selectédh@ dimension). Lep] be
the largest maximum empirical probability correspondiogtdimension greater thaii
(thus,pj < p*). Letd; be the corresponding dimensiongtp If p; > (1 — a)p*, thend; is
selected instead af. It is clear that the modified IF is more in favor of a “largerodel,
and in this sense it is more aggressive.

We run a same-data comparison of the E-MS with a number ofréift procedures.
The first is to combine the IF with the E-M (not E-MS) algorithkamely, we first run the
E-M algorithm to obtain the parameter estimates under therfodel. We then generate
(parametric) bootstrap samples under the full model, aseénlfE. The best part of this
procedure is that, when one generates the bootstrap sarapéegenerates complete data
rather than data with missing values. We then apply the neatliff, as described above,
to the bootstrapped data. We call such a procedure EMIF. trsiooulation study, we
consider three different values @f o« = 0 (corresponding to IF without the modification),
a = 0.1, anda = 0.5, for EMIF as well as each of the comparing procedures desdrib
below, except the E-MS.

Of course, this raises a question on whas the best, which one may not know in prac-
tice. On the other hand, the E-MS seems to have some advantdgeregard. The idea is
to start with a relatively large (say,« = 0.5), in order to be more conservative in dropping
the predictors, and gradually reducess the iteration progresses. More specifically, we
begin witha = 0.5; with each iteration, we reduceby half, until convergence.

In addition to EMIF and E-MS, two other methods are also idelliin our comparison.
One is IF based on the complete-record-only analysis (CRNIe other is IF with the
missing data replaced by the imputed data (IMIF). The lagdvased on a method of
multivariate imputation developed by van Buurenal. (2005), implemented in the R

package, areglmpute(). As a comparison, we have also @mesitF based on the complete
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data that were generated before the missing values wene tait¢ CDIF). The latter is, of
course, not possible in a practical situation, but it woutditteresting to see how much
loss of efficiency there is for a method, if any, compared &“told standard”. Note that
all the comparing methods are in conjunction with the IF,dhly difference being how the
missing data are handled. The results based on 100 simufats are presented in Tables
A.1 & A.2, where OF standards for overfitting, that is, the @mopl probability that the
selected model includes all the true predictors plus at ks extraneous predictor; UF
standards for underfitting, that is, the empirical prokigbihat the selected model misses
at least one true predictor [but may include extraneousigi@(ds)]; other performance

measures are the same as before (corresponding s.d.’sriglihdor MC and MIC).

Table A.1: Summary of Performance (p,, = 0.1)

Method o | TP OF UF MC sd. MIC s.d.
CRNIF 0 |0.67 0.00 0.33 1.67 0.47 0.00 0.00
0.1/085 0.00 0.15 1.85 0.36 0.00 0.00
0.5/0.73 0.27 0.00 2.00 0.00 0.27 0.45
IMIF 0 |0.61 0.00 0.39 1.61 0.49 0.00 0.00
0.1,088 0.00 0.12 1.88 0.33 0.00 0.00
0.5/0.72 0.28 0.00 2.00 0.00 0.28 0.45
EMIF 0 | 066 0.00 0.34 166 0.48 0.00 0.00
0.1,088 0.00 0.12 1.88 0.33 0.00 0.00
05075 025 0.00 2.00 0.00 0.25 0.44
CDIF 0 |[0.71 0.00 0.29 1.71 0.46 0.00 0.00
0.1/092 0.00 0.08 1.92 0.27 0.00 0.00
05,069 031 0.00 200 0.00 0.31 0.46
E-MS 098 0.01 0.01 199 0.10 0.01 0.10
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Table A.2: Summary of Performance (p,, = 0.2)

Method o« | TP OF UF MC sd. MIC s.d.
CRNIF 0 | 056 0.00 0.44 156 0.50 0.01 0.10
0.1/0.73 0.07 0.20 1.80 0.40 0.09 0.29
05,068 031 0.01 199 0.10 0.32 0.47
IMIF 0O [059 0.00 041 159 049 0.01 0.10
0.1/0.85 0.00 0.15 1.85 0.36 0.01 0.10
0.5/0.81 0.19 0.00 2.00 0.00 0.19 0.39
EMIF 0 |0.65 0.00 035 1.65 0.48 0.00 0.00
0.1/0.88 0.00 0.12 1.88 0.33 0.00 0.00
0.5/0.82 0.17 0.01 199 0.10 0.18 0.39
CDIF 0 |0.75 0.00 0.25 1.75 0.44 0.00 0.00
0.1/ 0.94 0.00 0.06 194 0.24 0.00 0.00
0.5/0.74 0.26 0.00 2.00 0.00 0.26 0.44
E-MS 095 0.01 0.04 196 0.20 0.03 0.17

Itis clear in this comparison that, overall, E-MS outpemfismot only all of the methods
that are practically feasible (CRNIF, IMIF, EMIF), but ald® “gold standard” (CDIF) that
is practically infeasible. In fact, in terms of the overadirformance, the order seems to be
(from best to worst) E-MS, CDIF, EMIF, IMIF, CRNIF. Of courséis not surprising that
CRNIF takes the last place, but what seems a little unexgésthat E-MS even (slightly)
outperforms CDIF. An explanation for this is that the periance of CDIF still suffers, to
some extend, the dominant factor effect (Jiahgl. 2011b), but E-MS is able to overcome
this (see below). A key to this “super-performanceijsvhich may be viewed as a tuning
parameter. It appears that the bastor CRNIF, IMIF, EMIF, and CDIF is somewhere
betweer).1 and0.5. Of course, in the simulation study we could explore thig akie, but
it would not be possible in practice. On the other hand, tiM3Eseems to be able to get the

best out of the&-business” during its iterations. By the way, in all of thesiation runs,
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the E-MS converged in 2-3 iterations. Also, it seems thaperéormance of IMIF, EMIF,

and E-MS are not affected much by the increase,of This is a bit surprising, as larger
pm Means less observed data. In fact, with = 0.1, one expects about 59% complete
data records; with,, = 0.2, the % of the complete data records drops to less than 33%.
On the other hand, it takes about twice the computing timencahe E-MS forp,, = 0.2,
compared t,, = 0.1. This is reasonable, as more data are missing upgder 0.2;
therefore, the conditional expectations, which have to éatdvith via the Monte-Carle
method (see Example 3), need to be evaluated more often tompy, = 0.1.

A.6.2 Robustnessof E-M S

We investigate performance of the E-MS in terms of robustnesler different aspects
of model misspecification. Both situations are in asscmmtvith the example of backcross
experiment in JNR (see Example 2 and Section 5).

1. A situation where the true model is not among the candidates. Nguyenet al. (2013)
considered a situation where the true underlying model issnmng those considered as
candidate models. Namely, all of the candidate models asshat the true QTLs are at
the exact locations of some of the markers under consideralin practice, however, this
may not be true; in other words, the true QTLs may be at lonatletween the markers.
More specifically, the authors considered the case whergubeQTLs are located in the
middle of their flanking markers; thus, the true underlyingdal is not a candidate model.
Nevertheless, the goal was to identify, among the candidaigels, the one that best ap-
proximates the true model in the sense that the identifiedkensuare closest to the true
QTLs. Here we consider a setting similar to those of Ngusteal. (2013). There are 6
true QTLs with identical signalsj (see below). The true is 0.2, which corresponds to a
heritability of approximately 25%. The true QTLs are lochite the middle of two flanking
markers, as followsl®* chromosome: markers 1 and 2; 3 and 4; 5 an2'6 chromosome:
markers 1 and 2; 3 and 4™ chromosome: markers 1 and 2. Following Nguytral.

(2013) (also see Broman & Speed 2002), the QTL is consideyadatly identified if one
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of the two flanking markers of the true QTL is identified; in ed®th of the flanking mark-
ers are identified, one is counted as correctly identifiegl pther incorrectly identified, to
avoid double counts. Once again, we compare the perfornarie E-MS with BIC with
the CDBIC. The results based on 100 simulations are reporféable A.3 under the same
setting as Table 2 of JNR. Overall, there is no obvious tremeéjther way of the perfor-
mance, compared to Table 2 of INR. For example, the relaffieeeacy (% Ratio) of the
E-MS with respect to CDBIC is very comparable to that repbrteTable 2 of JNR. This
suggests that E-MS is still capable in detecting the bestoxppating model in case that
the true model is not among the candidates.
Table A.3: Backcross Experiment; QTLsat Middle of Flanking Markers
n (B o Method) TP MC(s.d) MIC(s.d.) % Ratio
250 1 1 E-MS |0.36 5.62(0.56) 1.05(1.04) 86%
CDBIC | 0.45 5.65(0.54) 0.66 (0.71)
100 1 1 E-MS |0.22 4.48(0.85) 1.46(1.25) 63%
CDBIC | 0.35 4.64(0.80) 1.11(1.10)
250 0.5 1 E-MS |0.41 4.43(0.81) 1.04(1.10) 93%
CDBIC | 0.44 4.57(0.83) 0.74(0.81)
250 1 0.1 E-MS |0.41 5.99(0.10) 0.93(0.97) 67%
CDBIC | 0.61 5.99(0.10) 0.51(0.73)
500 1 1 E-MS | 052 5.96(0.20) 0.70(0.88) 90%
CDBIC | 0.58 5.98 (0.14) 0.50 (0.69)

2. A situation of heavy-tailed error distribution. In this study we consider model mis-

specification in terms of the distribution of the regresstorors in the backcross experi-
ment. Namely, the erroks are assumed to be normally distributed, but the assumpatilsn
and the errors, instead, have a t-distribution with 6 degofdéreedom (so the errors have
finite fitth moment, but no higher moments). However, pretdrat one does not know
about the t-distribution, and proceeds with the E-MS undemiormality assumption. The

E-MS is carried out the same way as in Example 2 and SectiodNRfand, in particular,
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with the FW/BW BIC (see Section A.3). Here we consider thee¢hat the true QTLs are
on the markers, as in Section 5 of JINR. The results based osidf@ations are reported
in Table A.4. Again, the setting is the same as Table 2 of INdF@ared to the latter, the
only significant drop in the E-MS performance seems to be #se evith weaker signal,
that is,0 = 0.5 (n = 250,0 = 1). On the other hand, the results seem to suggest that
the performance of E-MS is robust to the heavy-tailed ersoloag as the sample size is
relatively large, or the signal is relatively strong (comgzhto the noise).
Table A.4: Backcross Experiment; Heavy-tailed Error Distribution
n [ o Method] TP MC(s.d) MIC(s.d.) % Ratio
250 1 1 E-MS |0.54 5.98(0.14) 0.75(1.02) 73%
CDBIC | 0.74 5.99 (0.10) 0.36(0.73)
100 1 1 E-MS |0.17 5.36(0.76) 1.79(1.70) 52%
CDBIC | 0.33 5.59(0.60) 0.98 (1.18)
250 0.5 1 E-MS |0.03 4.61(0.75) 0.87(0.92) 25%
CDBIC | 0.12 4.84(0.72) 0.43(0.77)
250 1 0.1 E-MS |0.63 6.00(0.00) 0.61(0.91) 85%
CDBIC | 0.74 6.00(0.00) 0.36 (0.73)
500 1 1 E-MS |0.64 6.00(0.00) 0.46(0.69) 83%
CDBIC | 0.77 6.00(0.00) 0.32(0.68)

A.6.3 Missing covariates under various MDM

In this subsection we report results of the last simulatioys of Subsection 6.1, dis-
cussed near the end of the subsection. See Tables A.5 andtAstseen that, in some
cases (5 out of 10), the E-MS performed worse, but in somesdaseut of 10) the E-MS
performed better (note that these simulations used the saxdem seeds, so the results are
completely comparable). In particular, there are a coupleases of super-performance,
in which the E-MS actually outperformed the CDBIC. An intexfation is that the missing
data indicators may carry additional information to the ptete data, which the E-MS is

able to make use of (while the CDBIC cannot), if the MDM funais in the right way.
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Table A.5: Backcross Experiment with MDM, Scenario MA

n # o Method| TP MC(s.d) MIC(s.d) % Ratio

250 1 1 E-MS | 052 5.99(0.10) 0.84(1.08) 84%
CDBIC | 0.62 6.00(0.00) 0.47 (0.66)

100 1 1 E-MS |0.09 5.31(0.65) 1.64(1.59) 39%
CDBIC | 0.23 5.49(0.64) 1.22(1.37)

250 0.5 1 E-MS |0.05 4.52(0.81) 1.07(1.07) 42%
CDBIC | 0.12 4.73(0.80) 0.64 (0.78)

250 1 0.1 E-MS |0.78 6.00(0.00) 0.23(0.45) 126%
CDBIC | 0.62 6.00(0.00) 0.47 (0.66)

500 1 1 E-MS |0.51 6.00(0.00) 0.68(0.79) 76%
CDBIC | 0.67 6.00(0.00) 0.46 (0.72)

Table A.6: Backcross

Experiment with MDM, Scenario MB

n [ o Method] TP MC(s.d) MIC(s.d.) % Ratio

250 1 1 E-MS | 0.49 5.99(0.10) 0.78(0.89) 79%
CDBIC | 0.62 6.00 (0.00) 0.47 (0.66)

100 1 1 E-MS |0.14 5.27(0.78) 1.84(1.78) 61%
CDBIC | 0.23 5.49(0.64) 1.22(1.37)

250 0.5 1 E-MS | 0.09 455(0.82) 0.93(0.92) 75%
CDBIC | 0.12 4.73(0.80) 0.64 (0.78)

250 1 0.1 E-MS |0.79 6.00(0.00) 0.26(0.54) 127%
CDBIC | 0.62 6.00 (0.00) 0.47 (0.66)

500 1 1 E-MS |0.54 6.00(0.00) 0.67(0.72) 81%
CDBIC | 0.67 6.00(0.00) 0.46 (0.72)

A.6.4 Morecomparison with IMBIC

In this subsection, we present some additional simulagsalts regarding the compar-
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ison of E-MS with imputation-based methods. Unlike in Swaitiea A.6.1, which involved



Appendix to E-MS Algorithm 27

the IF method, the comparison here will focus on the BIC metiAs in Subsection A.6.1,
we use the R package areglmpute() (van Buteteal. 2005) for the imputation based
method, IMBIC. A brief description is as follows. By defaudtreglmpute uses predictive
mean matching (which does not work well when fewer than 3aldeis are used to pre-
dict the target variable, if the “closest” match is choseWjith the “regression” option,
areglmpute will use linear extrapolation to obtain a (hopgj reasonable distribution of
imputed values. Both linear and non-linear imputationscaresidered in our simulation.
Our results are based on 100 (multiple) imputations, fronthwvthe model with the highest
probability (or frequency) is chosen.

The results under the non-linear imputation (four knats,= 4; “closest " match)
are presented in Table 3 of JNR. The results under the limeputation (no knots) are
presented in Table A.7 here. The two sets of results are giidiar. Overall, the IMBIC
results are not comparable to the E-MS results, especratgrins of the % Ratio.

A.6.5 Performanceof E-MSin terms of parameter estimation

In this subsection, we consider performance of E-MS in tesfiarameter estimation
under the backcross experiment. Note that, because sorhe patameters, such as the
regression coefficients, depend on the selected modelpdtisery clear how to compare
these parameters under different models. Therefore, sdtidy, we have focused on
parameters that are common under all of the candidate modetgely, the recombination
fraction,d, and the error variance?. We evaluate performance of the estimatorg ahd
o? based on the (final) selected model by the E-MS in terms of bsance, and mean
squared error (MSE), and compare the results with thosedb@séhe selected model by
CDBIC. The results, based on 100 simulation runs, are regart Tables A.8 and A.9.
Note that, because the estimatorg @inly depend on the data, the results do not change,
within the same sample size, dsando change (which only affect thedata). The trué
is 0.2. Overall, the results show that, as the conditions imprthat, is, eithem increases,

or 3 increases, os decreases, the performance of E-MS and CDBIC are gettirsgclo
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estimating both parameters.

Table A.7: More Comparison with IMBIC in Backcross Experiment

n # o Method| TP MC(s.d) MIC(s.d) % Ratio

250 1 1 E-MS |0.51 5.99(0.10) 0.71(0.91) 82%
IMBIC | 0.35 5.79(0.50) 0.92(0.94) 56%
CDBIC | 0.62 6.00(0.00) 0.47 (0.66)

100 1 1 E-MS |0.12 5.22(0.62) 1.59(1.70) 52%
IMBIC | 0.08 4.68(0.85) 1.24(1.11) 35%
CDBIC | 0.23 5.49(0.64) 1.22(1.37)

250 0.5 1 E-MS |0.08 4.50(0.90) 1.12(1.07) 67%
IMBIC | 0.02 4.10(0.81) 1.00(0.95) 17%
CDBIC | 0.12 4.73(0.80) 0.64 (0.78)

250 1 0.1 E-MS |0.53 6.00(0.00) 0.66(0.87) 85%
IMBIC | 0.21 5.90(0.70) 1.03(0.76) 34%
CDBIC | 0.62 6.00(0.00) 0.47 (0.66)

500 1 1 E-MS |0.57 6.00(0.00) 0.60(0.82) 85%
IMBIC | 0.38 5.99(0.10) 0.79(0.80) 57%
CDBIC | 0.67 6.00(0.00) 0.46 (0.72)

Table A.8: Estimation of 6 in Backcross Experiment

n  Method| Bias® (10~%) Variance (0=°) MSE (107?)
100 E-MS 162 6.89 7.05
CDBIC 90.6 6.33 6.42
250 E-MS 14.0 3.24 3.25
CDBIC 8.48 2.81 2.81
500 E-MS 2.92 1.48 1.48
CDBIC 2.07 1.28 1.28

28
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Table A.9: Estimation of o2 in Backcross Experiment

29

n (B o Method Bias? Variance MSE
100 1 1 E-MS | 20x 1072 3.15x 1072 5.15x 1072
CDBIC | 3.15 x 1073 2.07 x 1072 2.38 x 1072
250 05 1.0 E-MS|940x10™* 9.54 x 10~* 10.50 x 1073
CDBIC | 823 x 1075 8.92x 1072 8.93 x 1073
250 1.0 1.0 E-MS|11.2x107* 9.86 x 10™® 10.98 x 1073
CDBIC | 2.72 x 107° 8.62x 1073 8.64 x 1073
250 1.0 0.1 E-MS|817x107® 885x 107" 8.16x107°
CDBIC | 8.11 x 1073 8.62x 1077 8.11x 1073
500 1.0 1.0 E-MS|822x107* 3.90x107% 4.73x107?
CDBIC | 1.08 x 107 3.58 x 1072  3.69 x 1073
A.7 Analysisof protein data
Table A.10: E-M S Resultsfor Grain Protein
Chromosome Marker ID# Chromosome Marker ID#
1 12 13 5 280 285 332 333
2 65 66 6 379 380
3 184 186 199 20( 7 467 470
4 176
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