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We propose a procedure associated with the idea of the E-M algorithm for model

selection in the presence of missing data. The idea extends the concept of parame-

ters to include both the model and the parameters under the model, and thus allows

the model to be part of the E-M iterations. We develop the procedure, known as the

E-MS algorithm, under the assumption that the class of candidate models is finite.

Some special cases of the procedure are considered, including E-MS with the gener-

alized information criteria (GIC), and E-MS with the adaptive fence (AF; Jianget al.

2008). We prove numerical convergence of the E-MS algorithmas well as consistency

in model selection of the limiting model of the E-MS convergence, for E-MS with

GIC and E-MS with AF. We study the impact on model selection ofdifferent miss-

ing data mechanisms. Furthermore, we carry out extensive simulation studies on the

finite-sample performance of the E-MS with comparisons to other procedures. The

methodology is also illustrated on a real data analysis involving QTL mapping for an

agricultural study on barley grains.
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1 Introduction

The missing-data problem has a long history (e.g., Afifi and Elashoff 1966, Hartley and

Hocking 1971). While there is an extensive literature on statistical analysis with missing

or incomplete data (e.g., Rubin 1976, Dempsteret al. 1977, Robinset al. 1995, Rotnitzky
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et al. 1998, Little & Rubin 2002), the literature on model selection in the presence of miss-

ing data is relatively sparse. Existing model selection procedures face special challenges

when confronted with missing or incomplete data. Obviously, the naive complete-data-

only strategy is inefficient, sometimes even unacceptable by the practitioners due to the

overwhelmingly wasted information. For example, in a studyof backcross experiments

(e.g., Lander and Botstein 1989, Zeng 1993, Jansen 1993, Broman and Speed 2002), a data

set was obtained by researchers at UC-Riverside (personal communications; see Zhanet al.

2011 for a related work). Out of the 150 or so subjects, only 4 have complete data record.

Situations like this are, unfortunately, the reality that we often have to deal with, and the

main motivation for this research project.

Fuchs (1982) proposed to use the E-M algorithm (Dempsteret al. 1977) for the ML es-

timation under a log-linear model with missing data, and then test for goodness-of-fit based

on the ML estimation in order to choose an appropriate model.Motivated by the predictive

divergence for incomplete observation models (PDIO; Shimodaira 1994), Cavanaugh and

Shumway (1998) derived an AIC for model selection in the presence of incomplete data. A

similar approach was considered by Seghouaneet al. (2005), in which the authors obtained

an unbiased estimator of the complete-data Kullback-Leibler symmetric divergence. Bueso

et al. (1999) used the E-M algorithm to compute the minimum description length (MDL;

Rissanen 1983) for model selection, when only incomplete data are available. Sebastiani

and Ramoni (2001) discussed a Bayesian approach for the selection of decomposable mod-

els by maximizing the posterior probability of a candidate model, and showed how to do

this with incomplete data. Henset al. (2006) considered a modification of the AIC based on

reweighting incomplete and design-based samples. Claeskens and Consentino (2008) pro-

posed some variations on the AIC based on the output of the E-Malgorithm. The method is

applicable to model selection problems with missing covariates, but the response variable

is assumed to be fully observed. Schomakeret al. (2010) considered two approaches of
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handling the missing data in determining the weights in frequentist model averaging. The

first is based on adjusting an existing criterion; while the second uses the unadjusted cri-

terion but with the missing data replaced by their imputed values. Verbekeet al. (2008)

offered a review of formal and informal model selection strategies with incomplete data,

but the focus is on model comparison, instead of model selection. As noted by Ibrahimet

al. (2008), while model comparisons “demonstrate the effect ofassumptions on estimates

and tests, they do not indicate which modeling strategy is best, nor do they specifically

address model selection for a given class of models”. The latter authors further proposed a

class of model selection criteria based on the output of the E-M algorithm. Also see Gar-

cia et al. (2010). A potential drawback with the E-M approach of Ibrahim et al. (2008)

is that the conditional expectation in the E-step is taken under the assumed (candidate)

model, rather than an objective (true) model. Note that the complete-data log-likelihood is

also based on the assumed model. Thus, by taking the conditional expection, again, under

the assumed model, it may bring false supporting evidence for an incorrect model. The

problem is sometimes referred to as “double-dipping”. We illustrate this with an example.

Example 1.Suppose that one attempts to select a logistic model,logit(pi) = x′iβ, where

pi = P(Yi = 1), Y1, . . . , Yn being independent, binary, observations, andxi is a vector of

covariates to be selected. Suppose thaty1, . . . , y5 are observed, and the rest of theyi’s are

missing. Also, for simplicity, assume that all thexi’s are observed. The derivation below in

this paragraph is based on MAR (Rubin 1976) for simplicity. LetM0 denote the intercept

only model and suppose that the true model is notM0. The complete-data log-likelihood

underM0 is l =
∑n

i=1{yi log(p0)+(1−yi) log(1−p0)}, wherep0 = eβ0/(1+eβ0) andβ0 is

the intercept. Note that, underM0, we haveE(l|y1, . . . , y5, all x′is) =
∑5

i=1{yi log(p0) +

(1−yi) log(1−p0)}+(n−5){p0 log(p0)+(1−p0) log(1−p0)}. If yi = 1, 1 ≤ i ≤ 5, then, as

p0 → 1, we haveE(l|y1, . . . , y5, all x′is) → 0. On the other hand, under any other model,

M , the corresponding log-likelihood isl =
∑n

i=1{yi log(pi) + (1 − yi) log(1 − pi)} ≤ 0,
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henceE(l|y1, . . . , y5, all x′is) ≤ 0, underM . This means that the maximized conditional

expectation ofl underM0 (which is0) is greater than or equal to the maximized conditional

expectation ofl underM (which is less than or equal to0). Thus, the first term of any

information criterion underM0 is less than or equal to that underM . On the other hand,

M0 certainly has the smallest dimension. Therefore,M0 will be selected as the optimal

model by the IC criteria of Ibrahimet al. (2008), which, of course, is an incorrect model.

To further illustrate numerically, we carry out a simulation study under the following

specific setting. Suppose that the candidate covariates include a continuous variable,x1,

whose values are generated from the standard normal distribution, and a binary indicator,

x2, whose values are generated from the Bernoulli(0.5) distribution. The following candi-

date models are considered: Model0: x′iβ = β0, Model j: x′iβ = β0 + βjxji, j = 1, 2,

and Model3: x′iβ = β0 + β1x1i + β2x2i. Two scenarios are considered. In the first sce-

nario, Model1 is the true underlying model with the true parametersβ0 = β1 = 1; in

the second scenario, Model3, which is the full model, is the true underlying model with

the true parametersβ0 = β1 = 1, β2 = −1. Furthermore, the missing data indicators,

Mi, which is1 if yi is missing, and0 otherwise, are generated either under anignorable

mechanism, in which caseP(Mi = 1|y) = 0.5 (case A), or under anon-ignorablemech-

anism, in which caseP(Mi = 1|y) = h(ψ0 + ψ1yi) with h(x) = ex/(1 + ex) and the true

parametersψ0 = 0.5 andψ1 = 0.2 (case B). See Section 6 for more details. We apply the

method of Ibrahimet al. (2008) with the BIC penalty, denoted by IZT, under two different

sample sizes,n = 50 andn = 100. A comparing method, which is what we are going to

propose in this paper, called E-MS (to be introduced in the next section), here in conjunc-

tion with the BIC, is also applied to the same simulated data.Results of the empirical true

positive (TP, i.e., the selected model is exactly the true underlying model) rates, based on

1,000 simulations, are reported in Table 1. It is seen that IZT performs considerably worse

than E-MS under all scenarios, cases, and sample sizes. Notethat both methods perform
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Table 1:Empirical TP for Logistic Model Selection

Missing Data Sample True Model= Model1 True Model= Model3

Mechanism Size E-MS IZT E-MS IZT

Case A n = 50 0.787 0.483 0.213 0.136

n = 100 0.965 0.738 0.467 0.216

Case B n = 50 0.837 0.395 0.169 0.097

n = 100 0.970 0.607 0.459 0.160

much worse under Model3 than under Model1, which is not surprising–the BIC is known

to over-penalize “larger” models, especially the full model (e.g., Jianget al. 2008). Fur-

thermore, the performance of E-MS does not seem to be affected by the different missing

data mechanisms (see Section 6 for more discussion), while IZT appears to perform worse

under the non-ignorable missing data setting (case B).

2 Outline of our main contributions

The strategic failure as illustrated by Example 1 is due to the double use of the assumed

model, once in the measure of lack-of-fit (i.e., the negativelog-likelihood) and once in the

conditional expectation of this measure. Note that the assumed model is not necessarily

the true model, so the conditional expectation under the assumed model is not necessarily

the true conditional expectation. As mentioned, this may bring false evidence in favor of

an incorrect model, and, by doing so, the E-M loses its “updating power” when applied to

model selection problems. In fact, the assumed model shouldbe treated the same way as the

unknown parameters (the model and the parameters under the model together completely

specify “the model”), so it is not reasonable to update only the parameters.
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Note that the double usage of the assumed model has been shownin the literature

to have serious consequences. For example, Copas and Eguchi(2005) discuss a similar

issue that they term asincomplete-data bias, in which the maximum likelihood estimators

can be (sometimes severely) biased when incomplete data arepresent, and an incorrect

model is being fit, and yet still appears to give a good fit to theavailable data. Jianget al.

(2011a) showed that if one derives the parameter estimatorsby evaluating the best predictor

(BP) under the assumed model, say,M , using the distribution also underM , the resulting

predictor is not robust in the sense that it may perform poorly whenM is not the true

model. Here, the failure of the BP is due to a similar double-dipping strategy, that is, (1)

the measure of lack-of-fit (sum of squared prediction errors), is for the BP underM ; and

(2) the distribution under which the measure of lack-of-fit is evaluated is also under onM .

In this paper, we propose a general strategy for model selection in the presence of in-

complete or missing data that can be used with any existing model selection procedure that

is designed for a complete data situation. Our strategy is based on the E-M idea; however,

unlike Ibrahimet al. (2008), the conditional expectation is evaluated under an objective

model, which is the same for all the candidate models. A key idea is to include the model,

as well as the parameters, in the E-M iteration, and the objective model, under which the

conditional expectations are evaluated in the E-step, is the current model. Another main

contribution of the current paper is that we establish theoretical properties of the proposed

E-MS algorithm, including the (numerical) convergence of the algorithm, and consistency

of the limiting model of the E-MS convergence in terms of model selection. We also inves-

tigate, from a theoretical standpoint, the impact of the missing data mechanism (MDM, e.g.,

Little & Rubin 2002) on the performance of the E-MS. Furthermore, we provide empirical

evidence, in terms of simulation studies and real data analysis, that support the theoretical

findings. More specifically, the simulation results comparethe finite-sample performance

of the E-MS with existing, ad-hoc, or “ideal” procedures. Weconsider various scenarios
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in our simulation studies, such as different types of MDMs, and the situation that the true

model is not among the candidate models.

It should be noted that, for the most part, there are three major approaches for model

selection, namely, the information criteria or, more generally, generalized information cri-

teria (GIC; e.g., Nishii 1984, Shibata 1984), the shrinkagemethods (Tibshirani 1996, Fan

& Li 2001, among others), and the fence methods (Jianget al. 2008). See, for example, a

recent review by Müller, Scealy and Welsh (2013). However,for the shrinkage methods,

E-MS is the same as the E-M algorithm. This is because the shrinkage methods combine

variable selection with estimation of the corresponding coefficients (the variables with zero

estimated coefficients are dropped from the current model).Thus, updating the model is

the same as updating the parameter estimates; or, from another point of view, the model

does not change with the iteration–it is always the full model. Therefore, in the subsequent

development we shall use GIC and the fence as main examples toillustrate our method.

It should also be pointed out that the current development isunder the assumption that

the class of candidate models is finte. Therefore, the methodology may not be applicable if

the model space is infinite dimensional, such as in semi-parametric modeling.

Following the general convention, throughout this paper weuse capital letters, e.g.,Y ,

for a random variable, or random vector, and small letters, e.g., y, for the observed, or

realized, value ofY (the only exception is when the observed values or realized values are

entries of a matrix, which, as usual, is denoted with a capital letter).

3 The E-MS algorithm

The E-M is well known for parameter estimation in the presence of missing data. On

the other hand, model selection, as another component of model identification, may also be

viewed as parameter estimation, with the parameter being [the identification (ID) number
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of] the model and the parameter space being the (ID numbers ofthe) model space. Namely,

we combine the parameters with the model under which the parameters are defined. So,

at the current stage of the iteration, we have the current model,Mc, as well as the current

estimates of the parameters,θ̂c, underMc. Let Q(M) = Q(Y,M, θM) be a measure of

lack-of-fit, whereY represents the complete data,M a candidate model, andθM the vector

of parameters underM . We take the conditional expectation ofQ(M) underMc, with

the parameters underMc, θMc
≡ θc, being θ̂c, given the observed data,yo, denoted by

Ec{Q(M)|yo}. This is the E-step.

In the next step, we carry out model selection usingEc{Q(M)|yo} as the measure of

lack-of-fit. To do so, we first find̂Qc(M) = infθM∈ΘM
Ec{Q(M)|yo}, whereΘM is the

parameter space underM . We can useQ̂c(M) in a GIC setting, in which the optimal

model,M̂opt, is found by minimizingQ̂c(M)+λn|M | overM ∈ M, the class of candidate

models, whereλn is a penalty that depends on the sample size,n, and|M | is the dimension

of M . Alternatively, we may use the fence method (Jianget al. 2008) based on̂Qc(M).

This is the MS-step, where MS stands for “model selection”. We then replaceMc by

M̂opt, found in the MS-step, and̂θc by θ̂opt, whereθ̂opt is the parameter vector under̂Mopt

corresponding to the minimizer ofEc{Q(M̂opt)|yo} overθM̂opt
∈ ΘM̂opt

, and return to the

E-step. We illustrate the E-MS procedure with some examples.

Example 2 (Backcross experiments).Quantitative trait loci (QTL) mapping in genetics

has been extensively studied (e.g., Lander and Botstein 1989, Zeng 1993, Jansen 1993).

More recently, Broman and Speed (2002) modified the BIC and applied it to QTL mapping

in backcross experiments. The method is for complete-data analysis only. In practice,

however, missing data are often present. For example, as mentioned earlier, in the data set

obtained for backcross experiments by the researchers at UC-Riverside, less than 3% of the

data have the complete records, that is, without the missingvalues.

Following Broman and Speed (2002), we have a conditional linear regression model
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for the phenotype variable,Y , such that, given the marker indicators,x, we haveYi =
∑r

k=1

∑

j∈Mk
βjkxijk + ǫi, wherer is the number of chromosomes,Mk is a subset of

{1, . . . , q} andq is the number of markers on each chromosome, andǫi is a normal error,

with mean zero and unknown varianceσ2. Theǫi’s are uncorrelated and also independent

with theXijk’s. Furthermore, the marker indicators,Xijk, are assumed to be a Markov

chain within each chromosome withP(Xi1k = 0) = P(Xi1k = 1) = 1/2 (Mendel’s rule)

andP(Xi,j+1,k = 1|Xijk = 0) = P(Xi,j+1,k = 0|Xijk = 1) = θ, whereθ is therecombina-

tion fraction. The problem of interest is to identify the subsetM = (M1, . . . ,Mr), which

is viewed as a model selection problem as in Broman and Speed (2002).

We consider the E-MS in conjunction with the BIC procedure. Due to the high di-

mensionality, we consider the forward/backward (FW/BW) BIC procedure of Broman and

Speed (2002). A detailed description of the latter is given in the Supplementary Mate-

rial (Section A.3). The log-likelihood, under a given model,M , can be expressed aslM =

lM,y|x+lx, wherelx does not depend on the model,lM,y|x = c−0.5{n log σ2+σ−2
∑n

i=1(yi−

−x′M,iβM)2}, c being a constant. Thus, we haveBIC(M) = −2l̂M + |M | log(n), wherêlM

is the maximizedlM (over the parameters). It is easy to show that the MLE ofθ, θ̂, is the

same as the maximizer oflx, which does not depend onM . Thus, we have

BIC(M) = −2l̂M,y|x + |M | log(n) − 2l̂x ∝ −2l̂M,y|x + |M | log(n). (1)

In addition, the FW/BW requires evaluation ofRSS(y,X) = minβ RSS(y,X, β), where

RSS(y,X, β) =
n

∑

i=1

(yi − x′iβ)2 (2)

with X = (x′i)1≤i≤n. Because both (1) and (2) involve missing data, we replace them

by their conditional expectations under the current model,Mc, and the current parameter
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estimates underMc, before the minimization/maximization. This leads to

RSSc(M |yo, xo) ≡ min
β

Ec{RSS(Y,X, β)|yo, xo}, (3)

BICc(M |yo, xo) ≡ −2 max
βM ,σ2

Ec(lM,Y |X |yo, xo) + |M | log(n), (4)

both of which have closed-form expressions (see SubsectionA.4.1 of the Supplementary

Material), wherexo andyo denote the observedx’s andy’s, respectively.

In summary, givenMc and the current parameter estimates, the FW/BW, based on (3),

is used to generate a sequence of models; the BIC, based on (4), is then applied to the

sequence generated by the FW/BW to update the model as well asparameter estimates.

A reasonable initial model is the full model,Mf . A reasonable initial estimator forθ

is θ̂0 = proportion of observed cases in whichxijk andxi,j+1,k are different. As for the

initial estimator ofβf , the vector of regression coefficients underMf , note that the idea

of least squares (LS) fit in regression is to find the parameterestimates that minimizes
∑n

i=1{yi−Ef(Yi|x)}
2, whereEf denotes expectation underMf . Due to the missing data, it

is natural to replace this by
∑

i∈Io
{yi−Ef(Yi|xo)}

2, whereIo denotes the subset of indexes

i so thatyi is observed. Furthermore, we haveEf(Yi|xo) =
∑r

k=1

∑q

j=1 βjkEf(Xijk|xo,i),

wherexo,i denotes the observex’s for the ith subject;Ef(Xijk|xo,i) = xijk if the latter is

observed, and an expression of the conditional expectationcan be easily obtained, withθ

replaced bŷθ0, if xijk is missing. We then run the LS withyi, i ∈ Io as the responses and

Ef(Xijk|xo,i)’s, i ∈ Io, as the predictors, to obtain the initial estimatorβ̂f,0, for βf . The

initial estimator forσ2, σ̂2
0 , is the RSS of this LS fit divided by|Io| − qr.

Example 3 (Linear regression).The classical linear regression is a conditional model,

in which the distribution of the covariates (or predictors)is not specified. As is well known,

such a model may not directly work with the E-M algorithm, if some of the covariates are

also missing. Little and Rubin (2002) proposed the following model for the joint distri-

bution of the response and covariates in a linear regression. Suppose that the candidate
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predictors can be listed asx1, . . . , xp, xp+1, . . . , xp+q such thatx1, . . . , xp are continuous

and xp+1, . . . , xp+q are discrete or categorical (in case there is an intercept, the corre-

sponding constant,1, is considered as the first discrete/categorical predictor). Furthermore,

let v1, . . . , vs be all the possible (vector-valued) values forxd = (xp+1, . . . , xp+q)
′. Let

xi,d be thexd corresponding to theith observation, andxi,c be the vector(x1, . . . , xp)
′

corresponding to theith observation, andxi = (x′i,c, x
′
i,d)

′. The assumptions are: (i)

Yi, Xi, i = 1, . . . , n are independent; (ii) for eachi, Xi,d has the probability distribution

P(Xi,d = vr) = πr, 1 ≤ r ≤ s, where theπr ’s are unknown probabilities such that
∑s

r=1 πr = 1; (iii) given Xi,d = vr, Xi,c has a multivariate normal distribution with mean

µr and covariance matrixΩ, whereµr, 1 ≤ r ≤ s are unknown vectors, andΩ is an un-

known covariance matrix that does not depend onr; and (iv) givenxi, Yi is normal with

meanx′iβ and varianceσ2, whereβ is an unknown(p + q)-dimensional vector of regres-

sion coefficients, andσ2 is an unknown variance. These assumptions are for the full model.

More generally, we are interested in a model,M , for the conditional distribution (iv). Write

xi,M = (x′i,M,c, x
′
i,M,d)

′, andβM = (β ′
M,c, β

′
M,d)

′. Then, underM , (iv) is replaced by (iv-M)

givenxi, Yi ∼ N(x′i,MβM , σ
2). The parts (i)–(iii) of the model are unchanged.

Let y, x, xc, xd denote the data for theyi, xi, xi,c, xi,d, respectively, across1 ≤ i ≤ n.

Then, it can be shown that the complete-data log-likelihoodhas the expression

l = c−
n

2
(log σ2 + log |Ω|) +

s
∑

r=1

nr log πr −
1

2

s
∑

r=1

n
∑

i=1

1(xi,d=vr)

×(xi,c − µr)
′Ω−1(xi,c − µr) −

1

2σ2

n
∑

i=1

(yi − x′i,MβM)2, (5)

wherec is a constant. Note that the maximum likelihood is a constrained maximization

problem, namely,max l subject to
∑s

r=1 πr = 1. DefineL = l + λ(
∑s

r=1 πr − 1). Then,

the MLE of the parameters, plus the Lagrange multiplierλ, is a stationary point ofL.

In Example 2 we considered the E-MS with BIC. To see an alternative, let us now

consider the E-MS in conjunction with the adaptive fence (AF; Jianget al. 2008). See
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Jiang (2014) for a recent review on the fence methods. Take the initial model,M0, as the full

model,Mf , and letβf be theβ underMf . Let Ef denote the conditional expectation under

Mf and the current estimates of parameters, underMf , includingβf , σ2, µr, πr, 1 ≤ r ≤ s,

andΩ. Let yo, xo denote the observedy, x, respectively. By (5), withM = Mf , we have

L̄f ≡ Ef(L|yo, xo) = c−
n

2
log σ2 −

1

2σ2

n
∑

i=1

Ef

{

(Yi −X ′
i,fβf)

2|yo, xo

}

, (6)

wherec does not depend onβf andσ2. From (6), we obtain the updates forβf andσ2,

β̂f = S−1
2 S1, σ̂2 = n−1{S0 − S ′

1S
−1
2 S1}, (7)

S0 =
∑n

i=1 Ef(Y
2
i |yo, xo), S1 =

∑n

i=1 Ef(Xi,fYi|yo, xo), S2 =
∑n

i=1 Ef(Xi,fX
′
i,f |yo, xo).

Furthermore, we have (see Subsection A.4.2 of the Supplementary Material)

µ̂r =

∑n

i=1 Ef{1(Xi,d=vr)Xi,c|yo, xo}
∑n

i=1 Pf(Xi,d = vr|yo, xo)
, π̂r =

Ef(Nr|yo, xo)
∑s

t=1 Ef(Nt|yo, xo)
, 1 ≤ r ≤ s, (8)

Ω̂ =
1

n

s
∑

r=1

n
∑

i=1

Ef{1(Xi,d=vr)(Xi,c − µ̂r)(Xi,c − µ̂r)
′|yo, xo}. (9)

It remains to evaluate the conditional expectations involved in (7)–(9). Letym, xm,

xc,m, andxd,m denote the missing parts ofy, x, xc, andxd, respectively. Although it is

possible to obtain the conditional densityfM(ym, xm|yo, xo), the result is not a common

distribution (e.g., normal), under which the conditional expectations can be easily obtained

analytically. Alternatively, one may consider sampling from the conditional distribution,

and use the Monte Carlo method to compute the conditional expectations. To do so, first

note that it is easy to show that one can sample from the joint conditional distribution by

sampling independently from the conditional distributionfor each subject. To sample from

the subject conditional distribution, note thatfM,i(yi,m, xi,m|yi,o, xi,o) ∝ fM,i(yi, xi) ∝

exp

[

s
∑

r=1

1(xi,d=vr)

{

log πr −
1

2
(xi,c − µr)

′Ω−1(xi,c − µr)

}

−
(yi − x′i,MβM)2

2σ2

]

,
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where∝ means that the expression is up to a function ofyi,o, xi,o, which is considered con-

stant during the sampling ofyi,m, xi,m. Next, we employ the Metropolized independence

sampler (MIS, e.g., Liu 2004, p. 115), which is a special caseof the Metropolis-Hastings

algorithm. We refer the details to Subsection A.4.2 of the Supplementary Material.

The initial estimates ofµr, 1 ≤ r ≤ s,Ω, πr, 1 ≤ r ≤ s are µ̂(0)
r = n−1

r,o

∑

i∈Ir,o
xi,c,

1 ≤ r ≤ s, whereIr,o = {1 ≤ i ≤ n : xi is observed andxi,d = vr}, andnr,o = |Ir,o|;

Ω̂(0) = n−1
o

∑s

r=1

∑

i∈Ir,o
{xi,c − µ̂

(0)
r }{xi,c − µ̂

(0)
r }′, whereIo = ∪sr=1Ir,o andno = |Io|,

andπ̂(0)
r = #{1 ≤ i ≤ n : xi,d observed and xi,d = vr}/#{1 ≤ i ≤ n : xi,d observed},

1 ≤ r ≤ s. Furthermore, the initial estimate ofβf is the LS estimate based on the all-

observed data, that is,̂β(0)
f = (X ′

aoXao)
−1X ′

aoyao (assuming, without loss of generality, that

X ′
aoXao is nonsingular), whereXao = (x′f,i)i∈Iao with Iao = {1 ≤ i ≤ n : xf,i, yi observed},

andyao = (yi)i∈Iao . The initial estimate ofσ2 is (σ̂2)(0) = |yao −Xaoβ̂
(0)
f |2/(|Iao| − p− q).

For any candidate modelM , letQ(M) = S0 − S ′
1S

−1
2 S1, whereS0 is the same as that

below (7), andSj , j = 1, 2 are the same as those below (7) withxi,f replaced byxi,M .

Note that the conditional expectation,Ef , will be done by the conditional sampling method

mentioned above, withM = M0. Run the AF, withQ(M) being the measure of lack-of-fit.

Denote the model selected by AF bŷM . Let β̂ = S−1
2 S1, whereSj , j = 1, 2 are given

below (7) withxi,f replaced byxi,M̂ . Next, letσ̂2 be given by (7), whereSj, j = 0, 1, 2 are

given below (7) withxi,f replaced byxi,M̂ . Also, let µ̂r, 1 ≤ r ≤ s, Ω̂, π̂r, 1 ≤ r ≤ s be

given by (8), (9) (note that these depend only onM0 = Mf , but not onM̂ ).

ReplaceM0 by M̂ , and the initial estimates bŷβ, σ̂2, µ̂r, 1 ≤ r ≤ s, Ω̂, π̂r, 1 ≤ r ≤ s,

and repeat the process. Note that, after this iteration, theEf is replaced byEM̂ , evaluated

by the conditional sampling method withM = M̂ .

Keep updating the model and parameters iteratively until convergence (see below).

Note. The AF procedure is potentially time-consuming due to the need for bootstrap-

ping (Jianget al. 2008). In this regard, we refer to some recent development onimproving
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the computational efficiency of the AF. See Panget al. (2013).

The convergence of the E-MS algorithm, as mentioned above, is a key theoretical issue

that we address in the next section.

4 Convergence and consistency of E-MS

In this section, we state the results regarding two importantxi theoretical properties of

the E-MS: The numerical convergence and consistency, in terms of model selection, of the

limit of the E-MS convergence. We term the latter as consistency of the E-MS. The details,

including proofs and interpretation of conditions, are deferred to Subsection A.1.3 of the

Supplementary Material. Also, we shall focus on E-MS with GIC, and defer similar results

for E-MS with AF to the same subsection in Supplementary Material.

The GIC, which include AIC, BIC, and other information criteria, is defined as

c(M, θ, Y ) = Q(M, θ, Y ) + p(M), (10)

whereQ is a measure of lack-of-fit that depends onM , a candidate model,θ, the parameter

vector underM (strictly speaking, it should be denoted byθM ; we suppress the subscript for

notation simplicity), andY , the vector of complete data, andp(·) is a penalty function on the

complexity ofM . If Y were observed, the model selection would be done by minimizing

c(M, θ, Y ), first overθ ∈ ΘM , the parameter space underM , and then overM ∈ M, the

space of candidate models. Note that, we have

min
M∈M

min
θ∈ΘM

c(M, θ, Y ) = min
M∈M

{

min
θ∈ΘM

Q(M, θ, Y ) + p(M)

}

= min
M,θ

c(M, θ, Y ), (11)

where in the right side minimization,θ is confined toΘM . BecauseY contains missing val-

ues, we cannot really do (11). Instead, we replace (10) by itsconditional expectation, given

the vector of observed data,yo, under the current model,M (t), and the current parameter
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vector,θ(t), which is defined underM (t), that is,

E
{

c(M, θ, Y )| yo,M
(t), θ(t)

}

= E
{

Q(M, θ, Y )| yo,M
(t), θ(t)

}

+ p(M). (12)

(11) is then carried out withc(M, θ, Y ) replaced by the right side of (12), orQ(M, θ, Y )

replaced byE{Q(M, θ, Y )|yo,M
(t), θ(t)}, resulting the minimizerM (t+1) andθ(t+1).

Suppose that there is an observed version of (10),g(M, θ, yo) = Qo(M, θ, yo) + p(M).

Denoteψ = (M, θ), whereθ is understood as the parameter vector underM . Let Ψ denote

the model/parameter space forψ. We assume the following regularity conditions.

A1. The model spaceM is finite; the parameter spaceΘM is compact for anyM ∈ M.

A2. For any fixedMj ∈ M, j = 0, 1, as θj , θ̃j ∈ ΘMj
and θ̃j → θj , j = 0, 1,

we haveE{Q(M1, θ̃1, Y ) −Q(M1, θ1, Y )|yo,M0, θ̃0} → 0 andE{Q(ψ1, Y )|yo,M0, θ̃0} −

E{Q(ψ1, Y )|yo,M0, θ0} → 0.

A3. For anyM, M̃ , we have

E{Q(M, θ, Y ) −Qo(M, θ, yo)|yo,M, θ} ≤ E{Q(M̃, θ̃, Y ) −Qo(M̃, θ̃, yo)|yo,M, θ}.

A4. {Ψ \Ψ0}∩Ψ1 = ∅, whereΨ0 = argminψ∈Ψ{Qo(ψ, yo)+ p(M)} andΨ1 = {ψ1 ∈

Ψ : ψ1 ∈ a(ψ1)} with a(ψ1) = argminψ∈Ψ[E{Q(ψ, Y )|yo, ψ1} + p(M)].

A5. |Ψ0| = 1, where| · | denotes cardinality.

Theorem 1. Under assumptionsA1–A5, the E-MS with GIC converges globally.

Note. The assumption about the parameter spaces being compact inA1 may be re-

moved, with a probability statement being added to the conclusion of Theorem 1. This is

because one can often consider a compact subspace of the parameter space, if the latter

is not compact, and let the subspace expand as the sample sizeincreases (similar to the

method of sieves; e.g., Jiang 1997). Meanwhile, the other assumptions of Theorem 1 are

expected to hold with probability tending to one, as the sample size increases, under reg-

ularity conditions. Thus, by applying Theorem 1, we conclude that, with any initial point,

the probability that the E-MS converges goes to one as the sample size increases. We show
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this with an example in the Supplementary Material (see Section A.2).

Following the classical assumptions for consistency of model selection, we assume the

existence of an optimal model,Mopt ∈ M, which is a true model that has the minimum

dimension among all true models inM. The corresponding true parameter vector is denoted

by θopt. Suppose thatM is divided into subclasses,Mu andMo, such thatM = Mu ∪

{Mopt} ∪ Mo. Here the subscripts u and o stand for “underfit” and “overfit”, respectively.

We use w.p.→ 1 for “with probability tending to one”.

Theorem 2. Under the assumptions of Theorem 1, if, in addition, we have

A6. for any M ∈ Mu, we have w.p.→ 1 that Qo(M,Yo) > Qo(Mopt, θopt, Yo), and

{p(M) − p(Mopt)}{Qo(M,Yo) − Qo(Mopt, θopt, Yo)}
−1 = oP(1), whereQo(M, yo) =

infθ∈ΘM
Qo(M, θ, yo); and

A7. for anyM ∈ Mo, we have w.p.→ 1 thatp(M)−p(Mopt) > Qo(Mopt, Yo)−Qo(M,Yo),

then, we have, w.p.→ 1, that the limiting model of the E-MS convergence isMopt. In other

words, the E-MS with GIC is consistent.

5 More simulation study

We have carried out a number of simulation studies to evaluate the finite-sample perfor-

mance of E-MS as well as its comparison with other strategies. One study is presented in

this section. More studies are presented in Section A.6 of the Supplementary Material.

We consider the backcross experiment model, described in Example 2, Section 3, with

q = 6 andr = 5, so there are 5 chromosomes with 6 markers on each chromosome. There

are 6 true QTLs, which are located at markers 1, 2, 3 on chromosome 1, markers 1, 2 on

chromosome 2, and marker 1 on chromosome 3. The coefficients at the true markers are

equal, and the value varies according to Table 2; so does the true value ofσ. The true

value forθ is 0.2. The complete data are generated as follows: First generatethe Markov
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chainXf with θ = 0.2; then generatee fromN(0, In); let Y = βXopt(1, 1, 1, 1, 1, 1)′ + e,

whereXopt has 6 columns corresponding to the true QTLs. Next, we randomly assign 10%

of the values in each column of the data matrix as missing. This leaves less than 4% of

the complete-data records, on average (similar to the backcross experiment data obtained

by the researchers at UC-Riverside; see Example 2). LetIo = {1, . . . , n} \ Im andOjk =

{1, . . . , n}\Mjk, 1 ≤ k ≤ r, 1 ≤ j ≤ q. The subsetsI ’s,M ’s andO’s are fixed throughout

the simulations. The observed data areyi, i ∈ Io, andxijk, i ∈ Ojk, 1 ≤ k ≤ r, 1 ≤ j ≤ q.

We study the performance of E-MS with BIC, as described in Example 2. The full

modelMf was used as the initial model. The result is compared with thecomplete-data

BIC (CDBIC), that is, the BIC result using the complete data.The latter is not available,

of course, in practice, but the goal was to see how much loss ofefficiency there is in

the presence of missing data. As another comparison, we haveincluded results of same-

data comparison with a standard imputation-based approach(IM), working in conjunction

with the BIC (IMBIC). A description of the IM is provided in Subsection A.6.1 (also see

Subsection A.6.4) of the Supplementary Material. Part of the IMBIC results are included

in Table 2, and part of the results are deferred to SubsectionA.6.4 of the Supplementary

Material due to the space limitation. We consider the following measures of performance:

TP – empirical probability of correct identification of exactly all the true QTLs (and nothing

else); MC – empirical mean number of correctly identified true QTLs (s.d.); and MIC –

empirical mean number of incorrectly identified “QTLs” (s.d.). In addition, we compute

the percentage ratio (% Ratio) of the TP of E-MS over the TP of CDBIC as a measure of

relative efficiency of the E-MS in terms of model selection. The % Ratio for IMBIC is

computed in a similar way. The results, based on 100 simulation runs, are presented in

Table 2. It is seen that the E-MS results improve when either the sample size increases, or

the value ofβ (the signal) increases, or the value ofσ (the noise) decreases, by all of the

performance measures. This makes sense because largern means more information about
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Table 2:Summary of Performance: Backcross Experiment

n β σ Method TP MC (s.d.) MIC (s.d.) % Ratio

250 1 1 E-MS 0.51 5.99 (0.10) 0.71 (0.91) 82%

IMBIC 0.38 5.82 (0.41) 0.75 (0.74) 61%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

100 1 1 E-MS 0.12 5.22 (0.62) 1.59 (1.70) 52%

IMBIC 0.09 4.68 (0.96) 1.42 (1.32) 39%

CDBIC 0.23 5.49 (0.64) 1.22 (1.37)

250 0.5 1 E-MS 0.08 4.50 (0.90) 1.12 (1.07) 67%

IMBIC 0.00 3.98 (0.80) 1.12 (1.07) 0%

CDBIC 0.12 4.73 (0.80) 0.64 (0.78)

250 1 0.1 E-MS 0.53 6.00 (0.00) 0.66 (0.87) 85%

IMBIC 0.20 6.00 (0.00) 1.03 (0.70) 32%

CDBIC 0.62 6.00 (0.00) 0.47 (0.66)

500 1 1 E-MS 0.57 6.00 (0.00) 0.60 (0.82) 85%

IMBIC 0.34 5.98 (0.14) 0.86 (0.83) 51%

CDBIC 0.67 6.00 (0.00) 0.46 (0.72)

the true underlying model; largerβ (or stronger signal) makes it easier to detect the true

underlying model; and smallerσ (or weaker noise) makes the sample size more effective

and signal relatively stronger. The IMBIC results are not quite comparable to the E-MS,

especially in terms of the % Ratio. In particular, unlike theE-MS results, the IMBIC results

do not seem to improve whenn increases from 250 to 500 (with the sameβ andσ).

More results of simulation studies are presented in the nextsection. Furthermore, we

have carried out simulation studies on the performance of E-MS in terms of parameter
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estimation. The results are presented in Subsection A.6.5 of the Supplementary Material.

6 Missing data mechanism

In a way, there are three cases that the MDM may be involved. The first case, case I,

is that the MDM is known, which is rarely the case in practice;the second case, case II,

is that the MDM is also of interest, and subject to model selection; the third case, case III,

is that the MDM is unknown, but is not of interest; in other words, in case III, there is an

underlying MDM, but the latter is something that one wishes to avoid dealing with. In our

experience, the third case is encountered most frequently in practice.

The presented E-MS method applies to cases I and II without any change. This is

because, in those cases, the observed data include bothyobs, which is what we normally

call “the data” without considering the MDM, and the missingdata indicators,mind. In

other words, the full (observed) data is(yobs, mind). Under either case I or case II, one has

a complete specification of the distribution of(Yobs,Mind), that is,

f(yobs, mind|θ, ψ) =

∫

f(y|θ)f(mind|y, ψ)dymis. (13)

The first factor inside the integral on the right side of (13) corresponds to the distribution

of the complete data,Y = (Yobs, Ymis), whereYmis represents the missing data; the second

factor,f(mind|y, ψ), corresponds to the MDM. Hereθ andψ denote the parameter vectors

that are involved in the distribution ofY and the MDM, respectively. Therefore, from a

methodology point of view, there is nothing new and (13) is just a special case to which the

E-MS applies, that is, a set of data and a distribution for thedata under an assumed model,

a part of which is the MDM. Note that, sometimes, the integration in (13) can be computed

either analytically, or numerically fairly easily. In suchcases, the E-MS is not needed; in

other words, the model selection can be carried out by directly using the likelihood function
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based on the full data, given by (13), which yields the same result as the converged E-MS,

had the latter been carried out, at least asymptotically (Theorems 1 & 2).

A more challenging case seems to be case III, in which one is interested in the model

on Y only, and would avoid dealing with the MDM if possible. As noted, this case is en-

countered most frequently in practice. Of course, one may always consider some candidate

models for the MDM, and treat the case the same way as case II; once a joint model is se-

lected, one simply takes the part regarding the distribution of Y , which is of main interest.

The question is: How does the latter approach compare to the E-MS that focuses on the

Y model only? Another related question is: How is the performance of the E-MS, which

ignores the MDM, affected by the true underlying MDM? In thissection, we address these

questions from both empirical and theoretical standpoints.

We refer to Rubin (1976) and Little & Rubin (2002) for the wellknown theory about

missing data, including the notions of MCAR, MAR, NMAR; and ignorable and non-

ignorable MDM. According to Little & Rubin (2002, sec. 6.2),the frequentist’s methods of

inference that ignore the MDM are still valid, even if the MDMis non-ignorable, although

there may be a loss of efficiency. It follows that the E-MS, as afrequentist’s method, is valid

even without considering the MDM; on the other hand, there may be a loss of efficiency in

terms of model selection performance. Furthermore, if the true MDM is ignorable, there

is no loss of efficiency in any likelihood-based inference, including model selection, by

ignoring the MDM. Therefore, the case of interest is when theMDM is non-ignorable.

6.1 Empirical studies

Let us begin by considering a simple model of the analysis of covariance (ANCOVA)

with two treatment groups and a control variable. The model can be expressed as

Yij = µi + βxij + ǫij , (14)



E-MS Algorithm 21

i = 1, 2, j = 1, . . . , k, whereYij is the response;µi is the unknown effect for groupi; β is

an unknown coefficient;xij is a covariate used as the control variable; andǫij is the error.

Theǫij ’s are assumed to be independentN(0, σ2), whereσ2 is an unknown variance, and

independent with theXij ’s. Our interest is in selecting a model forYij . There are four

candidate models:

I. (14) withµ1 = µ2 = µ andβ = 0. The true parameters areµ = σ2 = 1.

II. (14) with µ1 = µ2 = µ. The true parameters areµ = β = σ2 = 1.

III. (14) with β = 0. The true parameters areµ1 = 1, µ2 = −1, andσ2 = 1.

IV. (14) with no restriction. The true parameters areµ1 = 1, µ2 = −1, andβ = σ2 = 1.

Again, we consider the E-MS with BIC. We assume that the distribution ofXij does not

depend on the above models or parameters. Thus, as far as the BIC is concerned, only

the conditional log-likelihood,ly|x, matters. In each simulation run, thexij ’s are generated

from the standard normal distribution; theǫij ’s are then generated, and theYij obtained

under the true model.

We first investigate the impact of different MDMs on the performance of E-MS. Assume

that there are no missingxij ’s but some of the responses,Yij, are missing. DefineMind,ij =

1 if Yij is missing, andMind,ij = 0 if Yij is observed. It is assumed that theMind,ij ’s are

independent givenY . Furthermore, the following MDMs are considered:

A. P(Mind,ij = 1|y, ψ) = ψ. The trueψ is 0.5.

B. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1xij), whereh(u) = eu/(1 + eu). The true parameters

areψ0 = 0.5, ψ1 = 0.2.

C.P(Mind,ij = 1|y, ψ) = h(ψ0+ψ1µi), where theµi’s are the same group effect introduced

above. The trueψ’s are the same as in B.

D. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1yij). The trueψ’s are the same as in B.

In a way, the models are motivated by the examples consideredin Little & Rubin (2002,

ch. 6). The basic idea is to consider different types of MDMs including ignorable and
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Table 3:E-MS (BIC) under Different MDMs: n - total sample size. Reported are empir-

ical probabilities of true-positive (TP) based on 1,000 simulation runs.

A B C D

n 10 50 10 50 10 50 10 50

I 0.678 0.745 0.650 0.711 0.641 0.650 0.601 0.542

II 0.727 0.985 0.701 0.988 0.720 0.979 0.736 0.992

III 0.415 0.764 0.256 0.531 0.265 0.570 0.291 0.591

IV 0.327 0.942 0.227 0.798 0.214 0.841 0.239 0.850

non-ignorable missingness. It is clear that both A and B are ignorable. On the other hand,

C is a case of MCAR, but no distinctness of parameters, and therefore non-ignorable; D is a

case of NMAR, and hence non-ignorable. As mentioned, one expects no loss of efficiency

for E-MS under A or B, but the purpose is to see the difference under different situations.

The results, based on 1,000 simulation runs for each combination of the model and

MDM, and for two different sample sizes,n = 10 andn = 50, wheren = 2k is the total

number of observations, are reported in Table 3. As we can see, the performance of E-MS

depends heavily on the underlying true model, but to a much lesser extent on the MDM.

More specifically, when model I is the true model, the performance of E-MS somehow

decreases as the MDM gets more complex. On the other hand, when the true model is III,

or IV, there is a significant drop in the performance once the MDM moves away from A,

but not much of a difference between B, C, D. Finally, when model II is the true model, the

performance of the E-MS is fairly stable across all the MDMs.

Another aspect of the performance that seems to be affected by the MDM is the im-

provement as the sample size increases. In almost all the cases the performance of E-MS

improves as the sample size gets larger; however, the improvement is much more signifi-
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cant under II, III and IV than under I. In fact, in one case under I when the MDM is NMAR,

the performance even gets worse asn gets larger. One explanation is that the MDM is, in

this case, confounded with some of the candidate models thatleads to incorrect model se-

lections. In general, missing data reduces the effective sample size. However, additional

covariate data are available under II, III and IV, namely, the xij ’s (under II and IV) and

the group indicators (as another covariate, under III and IV), which are not affected by the

missing data. The covariate information helps to improve the performance as the sample

size increases. In fact, the largest improvement is seen under IV, which has both of the

covariates (xij and the group indicator) under the true model.

In our next simulation study, we focus on the efficiency of E-MS (in model selection),

and compare its performance with the approach based on the full-data-likelihood (13). To

make a fair comparison, both procedures are based on the BIC.The candidate models for

f(y|θ) are the same as above. The candidate MDMs are A–C plus

E. P(Mind,ij = 1|y, ψ) = h(ψ0 + ψ1µi + ψ2xij), where theµi’s are the same as in (14).

A motivation for not using model D as a candidate MDM is that wewould like to see what

happens when a NMAR missingness (that is, model D) is not considered as a candidate

MDM, but is actually at play. Model E also has the features that (i) it is non-ignorable,

and (ii) it is a full model when considered together with A, B,C. Let us term the E-MS

with BIC as E-MS, and the full-data BIC as FBIC. Note that, in this case, the FBIC can

be carried out directly without using the E-MS, as noted earlier. We compare the E-MS

with FBIC for two cases where the true underlying MDM is amongthe candidates, namely,

II-B and IV-B, in which case the FBIC would be considered efficient, and two cases where

the true underlying MDM is not among the candidates: namely,II-D and IV-D, in which

case the FBIC may not be efficient. Note that IV is a full model for f(y|θ). We increase

the sample size slightly from the previous simulation, namely, n = 40 andn = 80 now.

Results based on 500 simulation runs are reported in Table 4.
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Table 4:Comparison of E-MS and FBIC: n - total sample size. Reported are empirical

probabilities of true-positive (TP) based on 500 simulation runs.

II-B II-D IV-B IV-D

n E-MS FBIC E-MS FBIC E-MS FBIC E-MS FBIC

40 0.992 0.830 0.992 0.782 0.726 0.878 0.758 0.848

80 0.996 0.950 0.996 0.934 0.934 0.996 0.978 0.986

Before the results are revealed, one might speculate that E-MS would outperform FBIC

when the true MDM is not among the candidates, that is, II-D and IV-D, and the pattern

would reverse when the true MDM is among the candidates, thatis, II-B and IV-B. Thus,

the way that the results turn out to be might have surprised someones, including ourselves.

However, there are some explanations. First, in FBIC, one first targets the joint model

then marginalize to the model of interest, that is,f(y|θ). This is not necessarily a better

approach than targeting directly the model of interest. See, for example, Claeskens and

Hjort (2003). Another example, in the context of parameter estimation, is the restricted

maximum likelihood (REML; e.g., Jiang 2007), which targetsthe parameters of direct in-

terest, that is, the variance components. This often works better than the straight maximum

likelihood, which estimates all the parameters, some of which may be considered nuisance.

Secondly, the BIC is known to have the tendency of over-penalizing “larger” models,

and this is especially the case when the full model is the trueunderlying model (e.g., Jiang

et al. 2008). For E-MS, model IV is, simply, the full model, therefore, the BIC-based E-MS

suffers from over-penalizing. However, model IV is not necessarily (part of) the full model

for FBIC. This is because the full model for FBIC is the joint model (IV,E). For example,

suppose that (IV,B) is selected by the FBIC, then, obviously, it is not the full model, even

though it is “full” for the first component. The point being made is that the E-MS would
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suffer more from over-penalizing than the FBIC once IV is thetrue underlying model.

Thirdly, the true underlying MDM can affect the performanceof E-MS in positive or

negative ways, as shown by the earlier simulation result. Infact, if the MDM works in the

right direction, the E-MS can have a “super-performance”, as shown in the next study.

In Section 5, the missing data indexes were generated randomly independent of the data;

thus, the MDM was ignorable. We now repeat the simulation study but with the missing

data indexes generated according to the following two scenarios. LetMind,i be the missing

data indicator forYi, andmind,ijk that forxijk. Scenario MA: Given the dataY andx, (i)

generate theMind,i’s independently withP(Mind,i = 1) = 0.1; (ii) generate themind,ijk’s

independently so thatP(mind,ijk = 1) = 0.05 if xijk = 0, andP(mind,ijk = 1) = 0.1 if

xijk = 1. Scenario MB: Given the dataY andx, (i) generate theMind,i’s independently with

P(Mind,i = 1) = h(ψ0 + ψ1Yi), whereh(u) = eu/(1 + eu), ψ0 = −2.5, andψ1 = 0.1; (ii)

generate themind,ijk’s the same way as Scenario MA. It is clear that both scenariosare non-

ignorable. Scenario MA is MCAR in terms of theY data, but NMAR in terms of theY, x

data; Scenario MB is NMAR in terms of bothY andx data. Thus, in a way, Scenario MB

has a more serious non-ignorable MDM than Scenario MA. Due tothe space limitation,

the simulation results are presented in Subsection A.6.3 ofthe Supplementary Material.

Comparing with the results reported in Table 2, it is seen that, in some cases (5 out of 10),

the E-MS performed worse, but in some cases (5 out of 10) the E-MS performed better

(note that these simulations used the same random seeds, so the results are completely

comparable). In particular, there are a couple of cases of super-performance, in which

the E-MS actually outperformed the CDBIC. An interpretation is that the missing data

indicators may carry additional information to the complete data, which the E-MS is able

to make use of (while the CDBIC cannot), if the MDM functions in the right way.

The apparent interaction between the E-MS and MDM observed in the simulation stud-

ies is quite interesting. To demonstrate this theoretically, we explore the connection be-
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tween E-MS and MDM from a large sample point of view.

6.2 Large sample consideration

For simplicity, let us assume that the observationsYi are independent Gaussian with

meanEM,θM
(Yi), whereM indicates the assumed model for the mean, andθM the vector

of parameters underM , and unknown varianceσ2. Consider selection ofM using the E-

MS with BIC, which, at the current iteration, amounts to minimizen log{Ec(QM |yobs)} +

log(n)|M |, whereQM =
∑n

i=1{Yi − EM,θM
(Yi)}

2, |M | is the dimension ofθM , andEc

denotes conditional expectation under the current model and parameters under the current

model. Because the penalty term,log(n)|M |, is not affected by the MDM, we can focus

on the first term, which, eventually, leads to considerationof Ec(QM |yobs). The derivation

below requires, of course, some regularity conditions (e.g., Jiang, Lahiri & Wan 2002);

however, we shall bypass these technical conditions and focus on the insight of the result.

Letmind,i denote the missing data indicator. Then, we have

Ec(QM |yobs) =

n
∑

i=1

{yi − EM,θM
(Yi)}

21(mind,i=0)

+
n

∑

i=1

Ec{Yi − EM,θM
(Yi)}

21(mind,i=1). (15)

Suppose that the current model is correct, but not necessarily optimal. For example, if the

space of candidate models includes a true model, then the full model,Mf , is correct, but

not necessarily optimal in that it may include extraneous variables. Furthermore, suppose

that the current estimator of parameters is consistent. Then, the conditional expectation,

Ec, can be replaced by the true conditional expectation,E, resulting a difference that is of

lower order. Another situation is when the E-MS results in consistent model selection (see

Theorem 2). Then, asymptotically, one can replaceEc by E. Furthermore, by Theorem

2 of Jianget al. (2011a), the minimizer of (15), withEc replaced byE, θ̂M , converges
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in probability to some limiting vector, say,θM , and this is true regardless whetherM is

a correct model. Thus, by considering the leading term, we can focus on (15) withEc

replaced byE, andθM being the limiting vector. LetP(Mind,i = 1|y) = 1 − h(yi) be the

true underlying MDM; in other words,h(yi) = P(Mind,i = 0|y), wherey is the complete

data. Defineci = E{Yih(Yi)}/E{h(Yi)} (again,E without subscript represents the true

expectation). It is shown in Seciton A.5 of the Supplementary Material that

E{Ec(QM |Yobs)} =
n

∑

i=1

{ci − EM,θM
(Yi)}

2E{h(Yi)}

+

n
∑

i=1

{E(Yi) − EM,θM
(Yi)}

2[1 − E{h(Yi)}] + δ, (16)

whereδ consists of lower-order terms, or terms that do not depend onM . Let Mopt de-

note the optimal model. Then, forM = Mopt, the second term on the right side of (16)

disappears. Thus, we have (again, see Section A.5 of the Supplementary Material)

difference in (15) between M and Mopt

= E{Ec(QM |Yobs)} − E{Ec(QMopt
|Yobs)} + δ1

= 2
n

∑

i=1

cov{Yi, h(Yi)}{E(Yi) − EM,θM
(Yi)} + δ2, (17)

whereδ1 denotes terms of lower-order, andδ2 consists of terms of lower-order, or terms

that do not depend on the MDM. (17) is a key result that shows how the performance of

the E-MS is influenced by the MDM through its leading term, namely, the larger this term

(i.e., more positive), the easier to distinguish a non-optimal model from the optimal one. It

is interesting to note that the leading term is a sum of products, where the first factor of the

product,cov{Yi, h(Yi)}, depends on the MDM but not onM , while the second factor of

the product,E(Yi) − EM,θM
(Yi), depends onM but not on the MDM.

Expression (17) may help to explain, for example, the interesting pattern observed in

Table 3. Note thath(yi) is the probability thatyi is observed. Therefore, among the four
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MDMs considered, case D is likely the case that the covariance, cov{Yi, h(Yi)}, is largest

in absolute value, but the sign is negative becauseh(yi) is decreasing withyi in this case.

Thus, if we denote the differenceEM,θM
(Yi) − E(Yi) by dM , the summand in (17) can be

written as the product of the positive covariance,cov{Yi, 1 − h(Yi)}, anddM . Note that

dM is likely to be much larger whenM is underfitting than overfitting. Now look at Table

3, case D, withn = 50 to imitate the large sample behavior. Under model I, none of the

candidate models are underfitting; thus, theirdM contributions are likely to be relatively

small, hence it is more difficult to identify a non-optimal model. Similarly, under model

III, none of the other models appear to be underfitting. On theother hand, under model II,

models I and III are underfitting; under model IV, all of the other models are underfitting.

This explains why the empirical TPs are much higher under models II and IV. It should

be noted that, as is well known, a BIC-based approach tends tosuffer when the full model

is the underlying model, which may explain why the empiricalTPs under model II are

higher than those under model IV. Similar explanations alsoapply to cases C and B. The

behavior under case A is somewhat different, and there is, again, an explanation. Note that,

under case A, the probability of missing is a constant. It follows thatcov{Yi, h(Yi)} = 0.

Therefore, in this case, the leading term in (17) has disappeared.

7 Real data example

Recall the data set obtained by the UC-Riverside researchers mentioned in Section 1.

The gene expression data were originally published by Luoet al. (2007). The phenotypic

values of eight quantitative traits of barley were published by Hayeset al. (1993). Detailed

description of the experiment can be found in the latter reference, which involved 150

double haploid (DH) lines derived from the cross of two spring barley varieties, Morex

and Steptoe. The DH lines are considered as the subjects here. In all there were 495
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SNP markers on seven chromosomes that are under investigation. As mentioned, there

are significant missing values in the data so that only 4 of the150 subjects have complete

genotype records. On the other hand, there are no missing values in the phenotypic data.

We consider a Markov-chain model as in Example 2. However, the high-dimensional

nature of the data presents a problem for the direct application of the E-MS, because the

total number of markers (495) is much larger than the sample size (n = 150). More

specifically, the least squares (LS) fit is unfeasible when the number of predictors is larger

than the sample size. To overcome this difficulty, we use the following idea ofconditional

modeling, described under a more general setting.

Suppose that, conditional onX = (x′i)1≤i≤n, one has a linear regressionY = Xβ + ǫ,

whereY = (Yi)1≤i≤n are the observations, andǫ = (ǫi)1≤i≤n are the errors such that the

components ofǫ are independent with mean0, andǫ is independent ofX. Furthermore,

suppose thatX = [X(1) X(2)] with X(r) = (X ′
ir)1≤i≤n, r = 1, 2 such thatX(1), X(2)

are independent [e.g., Broman & Speed (2002)]. Then, it is easy to show thatX(1) is

independent of[X(2), ǫ]. Note that we can express the regression model asY = X(1)β1 +

X(2)β2 + ǫ. Without loss of generality, we assume thatX(1)β1 does not involve an intercept

[which, if exist, belongs toX(2)β2].

Now suppose thatXi2, i = 1, . . . , n are independent, and thatE(Xi2) does not depend

on i. Then,E(X ′
i2β2 + ǫi) = E(Xi2)

′β2 is a constant, say,β0. Let ei = X ′
i2β2 + ǫi −

β0. It is easy to show thatei, i = 1, . . . , n are independent withE(ei) = 0, andY =

[1n X(1)](β0 β
′
1)

′+e, e being independent of[1n X(1)]. In other words, conditional onX(1),

we, once again, have a standard linear regression model (i.e., the errors are independent

with mean zero, and independent with the predictors).

The point is thatX(1) can be of much lower dimension thanX. For the barley cross

data, we can letX(1) correspond to markers on any particular chromosome. The number of

markers on the 7 chromosomes are 60, 78, 81, 60, 93, 56 and 67, respectively, all of which
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are smaller than the sample size 150. Within each chromosome, we apply the E-MS in

conjuction with the IF (Jianget al. 2011b; also see Jiang 2014). The number of bootstrap

samples is chosen asB = 100.

It is known that, for high-dimensional data the IF may sufferfrom the so-called dom-

inant factor effect (Jianget al. 2011b, sec. 3.3). For the most part, this means that the

IF frequency (i.e., the empirical probability of the most frequently selected model; e.g.,

Jiang 2014) tends to be in favor of a lower dimensional model than the true model, if the

“signals” are relatively weak due to the limited sample size. This problem is dealt with nat-

urally by the E-MS. First we apply the IF, under the full model, that is, all the markers on a

given chromosome, to obtain the IF frequencies at differentdimensions, say,p∗1, p
∗
2, . . . , p

∗
q,

wherep∗j is the IF frequency at dimensionj, andq is the total number of markers, for the

chromosome. If the frequencies show a “peak”, that is, thereis a 1 < j < q such that

p∗j > p∗j−1 andp∗j > p∗j+1, the E-MS shall continue; otherwise, we conclude that there

is no more than one QTL on the chromosome. In the latter case, the highest IF frequecy

must take place at the boundary, that is, either at dimensionone or at the highest dimension

corresponding to all the markers on the chromosome. However, it is unlikely that all the

markers are QTLs; therefore, dimension one is chosen, and the E-MS stops.

If the frequency plot show a “peak”, and therefore the E-MS isto continue, we first

look for the last peak, that is, the highest dimension that corresponds to a peak in order to

be conservative. This is similar to the AF (Jianget al. 2009), where the first significant

peak is chosen in order to determine the cut-off for the fence(e.g., Jiang 2014). The first

peak for the AF corresponds to the last peak for the IF. The markers corresponding to the

last peak are selected, the current model is updated, and theupdated model is treated as

the (new) full model for the next step of iteration. The procedure is repeated until either

the updated model is identical to the current model, or no peak is found during the current

step; in both cases, the current model is chosen as the final model. For the latter case, when
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no peak is found, we choose the highest dimension, instead ofdimension one as above in

the initial step. This is because, at this stage, we have already determined that there are

more than one QTLs on the chromosome (the E-MS would not have continued otherwise);

furthermore, the highest dimension possibly has been updated, so it no longer corresponds

to all of the markers on the chromosome.

The results for the grain protein phenotype are presented inTable A.10 of the Supple-

mentary Material. The results show some consistency with the foundings of Zhanet al.

(2011). For example, the latter authors found that chromosomes 2, 3, 5 “seem to control

more genes than other chromosomes”. According to our results, those three chromosomes

contain nearly 60% of all the QTLs found. In particular, chromosomes 3 and 5 are the

top two according to the number of QTLs found. It should be noted that the number of

QTLs found on a chromosome is not the only thing that represents the relative importance

of the chromosome; the magnitude of the QTL effect is also important. In this application,

however, our focus is identification of the QTLs, rather thanestimation of the QTL effects.

8 Discussion

George Box once famously said that “essentially, all modelsare wrong, but some are

useful” (Box 1979). Practical use of statistical modeling involves using the model as an

approximation to the real-life problem, rather than the truth for the problem. Thus, model

selection, correspondingly, should be understood as finding the optimal model that most ef-

ficiently approximates the problem of practical interest. Although, in the simulation studies

presented in this paper, we have looked at cases where there is a true model among the can-

didate models, we have, indeed, considered situations where there is no true model among

the candidate models. More specifically, Nguyenet al. (2013) considered a situation where

the true underlying model is not among those considered as candidate models. Namely, all
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of the candidate models assume that the true QTLs are at the exact locations of some of the

markers under consideration. In practice, however, this may not be true; in other words,

the true QTLs may be at locations between the markers. The authors considered the case

where the true QTLs are located in the middle of their flankingmarkers; therefore, the true

underlying model is not a candidate model. Nevertheless, the goal was to identify, among

the candidate models, the one that best approximates the true model in the sense that the

identified markers are closest to the true QTLs. We consider asetting similar to those of

Nguyenet al. (2013). Our simulation results show that E-MS, here in conjunction with the

FW/BW BIC (see Section A.3 of the Supplementary Material), is still capable of identify-

ing the best approximating model in case that the true model is not among the candidates.

See Subsection A.6.2.1 of the Supplementary Material for detail.

Our investigation on the E-MS has revealed other interesting properties of the proce-

dure that deserve further studies. In particular, there have been studies on adjusting the

penalty parameter in the information criteria to make the latter “more aggressive”, in some

sense. For example, Mueller and Welsh (2005) finds that a modified BIC procedure with

the penalty2 logn instead oflog n works better in some cases. Similar findings were re-

ported in Broman & Speed (2002). Mueller and Welsh (2010) treats the problem through a

unified approach by considering the selection curves in GIC,in which the criterion function

is viewed as a linear function of the penalty parameter. On the other hand, the fence meth-

ods (e.g., Jiang 2014) is able to avoid dealing with the penalty by letting the data speak on

how to choose a cut-off, or a tuning parameter. Potentially,another way of letting the data

speak in choosing the tuning parameter is through the E-MS, as suggested by the simulation

study in Subsection A.6.1 of the Supplementary Material. Namely, as the E-MS iteration

proceeds, one is having a clearer picture about the data-generating mechanism. This would

help one in knowing whether one should be “more aggressive”,or “less aggressive”, in

choosing the penalty.
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There has been recent interest in (joint) selection of fixed and random effects in mixed

effects models. See Bondellet al. (2010), Ibrahimet al. (2011). The authors of latter

references used Cholesky-type decompositions, which allow them to use the approach of

shrinkage selection methods. The E-M algorithm is used (in both references) to deal with

the fact that the random effects are not observable. See Jiang (2014) for further discussion.

As noted (see second to last paragraph of Section 2), for shrinkage methods, the E-MS

and E-M are the same. Alternatively, one may treat the problem as joint selection of the

fixed effects and variance-covariance structure of the random effects, as in Mou (2012).

The point is that one may treat the random effects as incomplete data, as in the traditional

approach of mixed model analysis via the E-M algorithm (e.g., Jiang 2007, sec. 4.1.1). The

E-MS procedure developed in the current paper seems to fit naturally to the latter approach.

This would be a very interesting problem of future studies.
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