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We propose a procedure associated with the idea of the E-ditdon for model
selection in the presence of missing data. The idea extéredsancept of parame-
ters to include both the model and the parameters under tlielmand thus allows
the model to be part of the E-M iterations. We develop the guace, known as the
E-MS algorithm, under the assumption that the class of datelimodels is finite.
Some special cases of the procedure are considered, imgl&eMS with the gener-
alized information criteria (GIC), and E-MS with the adaptfence (AF; Jiangt al.
2008). We prove numerical convergence of the E-MS algordiswell as consistency
in model selection of the limiting model of the E-MS converge, for E-MS with
GIC and E-MS with AF. We study the impact on model selectiomifferent miss-
ing data mechanisms. Furthermore, we carry out extensivelaiion studies on the
finite-sample performance of the E-MS with comparisons teoprocedures. The
methodology is also illustrated on a real data analysishinvg QTL mapping for an

agricultural study on barley grains.
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1 Introduction

The missing-data problem has a long history (e.g., Afifi arasBbff 1966, Hartley and
Hocking 1971). While there is an extensive literature omistiaal analysis with missing

or incomplete data (e.g., Rubin 1976, Dempsteal. 1977, Robingt al. 1995, Rotnitzky
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et al. 1998, Little & Rubin 2002), the literature on model selentio the presence of miss-
ing data is relatively sparse. Existing model selectiorcpdures face special challenges
when confronted with missing or incomplete data. Obviouslg naive complete-data-
only strategy is inefficient, sometimes even unacceptaplthé practitioners due to the
overwhelmingly wasted information. For example, in a stoflypackcross experiments
(e.g., Lander and Botstein 1989, Zeng 1993, Jansen 1998)d@rand Speed 2002), a data
set was obtained by researchers at UC-Riverside (persomahanications; see Zhaat al.
2011 for a related work). Out of the 150 or so subjects, onlpavkelcomplete data record.
Situations like this are, unfortunately, the reality tha wften have to deal with, and the
main motivation for this research project.

Fuchs (1982) proposed to use the E-M algorithm (Demptal. 1977) for the ML es-
timation under a log-linear model with missing data, anchttest for goodness-of-fit based
on the ML estimation in order to choose an appropriate maddetivated by the predictive
divergence for incomplete observation models (PDIO; Skiava 1994), Cavanaugh and
Shumway (1998) derived an AIC for model selection in the @nes of incomplete data. A
similar approach was considered by Seghowara. (2005), in which the authors obtained
an unbiased estimator of the complete-data Kullback-eedmmetric divergence. Bueso
et al. (1999) used the E-M algorithm to compute the minimum desomdength (MDL,;
Rissanen 1983) for model selection, when only incompleta dee available. Sebastiani
and Ramoni (2001) discussed a Bayesian approach for tretiealef decomposable mod-
els by maximizing the posterior probability of a candidated®l, and showed how to do
this with incomplete data. Heres al. (2006) considered a modification of the AIC based on
reweighting incomplete and design-based samples. Clagsiel Consentino (2008) pro-
posed some variations on the AIC based on the output of thedigbtithm. The method is
applicable to model selection problems with missing catas, but the response variable

is assumed to be fully observed. Schomadeal. (2010) considered two approaches of
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handling the missing data in determining the weights indesdist model averaging. The
first is based on adjusting an existing criterion; while teead uses the unadjusted cri-
terion but with the missing data replaced by their imputeldes Verbekeet al. (2008)
offered a review of formal and informal model selection &gges with incomplete data,
but the focus is on model comparison, instead of model setecAs noted by Ibrahinet
al. (2008), while model comparisons “demonstrate the effeetssimptions on estimates
and tests, they do not indicate which modeling strategy &, ber do they specifically
address model selection for a given class of models”. Therlatithors further proposed a
class of model selection criteria based on the output of thé &gorithm. Also see Gar-
ciaet al. (2010). A potential drawback with the E-M approach of Ibralat al. (2008)
is that the conditional expectation in the E-step is takedeurthe assumed (candidate)
model, rather than an objective (true) model. Note that dmepiete-data log-likelihood is
also based on the assumed model. Thus, by taking the camaliegpection, again, under
the assumed model, it may bring false supporting evidencariancorrect model. The
problem is sometimes referred to as “double-dipping”. Westrate this with an example.
Example 1Suppose that one attempts to select a logistic moegt,(p;) = =5, where
pi = P(Y; = 1), Yy,...,Y, being independent, binary, observations, ant a vector of
covariates to be selected. Suppose that. ., y; are observed, and the rest of thé&s are
missing. Also, for simplicity, assume that all thgs are observed. The derivation below in
this paragraph is based on MAR (Rubin 1976) for simplicitgt I/, denote the intercept
only model and suppose that the true model is Mgt The complete-data log-likelihood
underMyisi = Y7 {yilog(po)+ (1 —y;) log(1—po)}, Wherep, = e /(14¢%) andf is
the intercept. Note that, undéf,, we haveE(l|yi, ..., ys, all z}s) = Z?:l{yi log(po) +
(1—y;) log(1—po) }+(n—5){po log(po)+(1—po) log(1—po)}. If y; = 1,1 < i < 5, then, as
po — 1, we haveE(l|yi, ..., ys, all zis) — 0. On the other hand, under any other model,

M, the corresponding log-likelihood is= > ", {y; log(p;) + (1 — v;) log(1 — p;)} <0,
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henceE(l|yi, ..., ys, all 2s) < 0, underM . This means that the maximized conditional
expectation of under), (which is0) is greater than or equal to the maximized conditional
expectation of underM (which is less than or equal ©®. Thus, the first term of any
information criterion unden/, is less than or equal to that unde&f. On the other hand,
M, certainly has the smallest dimension. Therefavk, will be selected as the optimal
model by the IC criteria of Ibrahirat al. (2008), which, of course, is an incorrect model.
To further illustrate numerically, we carry out a simulatistudy under the following
specific setting. Suppose that the candidate covariatasd@@ continuous variable;,
whose values are generated from the standard normal disombh and a binary indicator,
x9, Whose values are generated from the Bern@uilj distribution. The following candi-
date models are considered: Mod@elz;5 = 3,, Model j: =5 = By + Bz, = 1,2,
and Model3: z;3 = [y + iz + Paza;. TWO Sscenarios are considered. In the first sce-
nario, Modell is the true underlying model with the true parametéys= 5, = 1; in
the second scenario, Mod&| which is the full model, is the true underlying model with
the true parameters, = 3; = 1,6, = —1. Furthermore, the missing data indicators,
M;, which is1 if y; is missing, and) otherwise, are generated either undeigrrorable
mechanism, in which cade(M; = 1]y) = 0.5 (case A), or under aon-ignorablemech-
anism, in which cas®(M; = 1]y) = h(vo + ¢1y;) with h(x) = e” /(1 + €*) and the true
parameterg), = 0.5 andy; = 0.2 (case B). See Section 6 for more details. We apply the
method of Ibrahinet al. (2008) with the BIC penalty, denoted by IZT, under two diffiet
sample sizes; = 50 andn = 100. A comparing method, which is what we are going to
propose in this paper, called E-MS (to be introduced in the section), here in conjunc-
tion with the BIC, is also applied to the same simulated d&&sults of the empirical true
positive (TP, i.e., the selected model is exactly the trugedlying model) rates, based on
1,000 simulations, are reported in Table 1. It is seen thatd&rforms considerably worse

than E-MS under all scenarios, cases, and sample sizes.tiNateoth methods perform
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Table 1:Empirical TP for Logistic Model Selection

Missing Data  Samplé True Model= Model1 | True Model= Model 3
Mechanism Size E-MS 1IZT E-MS 1IZT
Case A n =50 | 0.787 0.483 0.213 0.136

n =100 | 0.965 0.738 0.467 0.216
Case B n =50 | 0.837 0.395 0.169 0.097

n =100 | 0.970 0.607 0.459 0.160

much worse under Modélthan under Model, which is not surprising—the BIC is known
to over-penalize “larger” models, especially the full mbfeg., Jianget al. 2008). Fur-
thermore, the performance of E-MS does not seem to be affégt¢he different missing
data mechanisms (see Section 6 for more discussion), whil@ppears to perform worse

under the non-ignorable missing data setting (case B).

2 Outlineof our main contributions

The strategic failure as illustrated by Example 1 is due ¢odbuble use of the assumed
model, once in the measure of lack-of-fit (i.e., the negdtgelikelihood) and once in the
conditional expectation of this measure. Note that therassumodel is not necessarily
the true model, so the conditional expectation under themnasd model is not necessarily
the true conditional expectation. As mentioned, this magdofalse evidence in favor of
an incorrect model, and, by doing so, the E-M loses its “updgtower” when applied to
model selection problems. In fact, the assumed model steuickated the same way as the
unknown parameters (the model and the parameters underatiel hogether completely

specify “the model”), so it is not reasonable to update ohé/parameters.
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Note that the double usage of the assumed model has been shdiwm literature
to have serious consequences. For example, Copas and Eg06b) discuss a similar
issue that they term ascomplete-data bigsn which the maximum likelihood estimators
can be (sometimes severely) biased when incomplete dagar@sent, and an incorrect
model is being fit, and yet still appears to give a good fit toahailable data. Jianet al.
(2011a) showed that if one derives the parameter estimayagaluating the best predictor
(BP) under the assumed model, s&¥, using the distribution also undér, the resulting
predictor is not robust in the sense that it may perform goathen M is not the true
model. Here, the failure of the BP is due to a similar doubjgsiuhg strategy, that is, (1)
the measure of lack-of-fit (sum of squared prediction ejrassfor the BP unden/; and
(2) the distribution under which the measure of lack-ofdfievaluated is also under ar.

In this paper, we propose a general strategy for model $ateict the presence of in-
complete or missing data that can be used with any existirdpirselection procedure that
is designed for a complete data situation. Our strategysedban the E-M idea; however,
unlike Ibrahimet al. (2008), the conditional expectation is evaluated underlgaative
model, which is the same for all the candidate models. A kew id to include the model,
as well as the parameters, in the E-M iteration, and the tlagemodel, under which the
conditional expectations are evaluated in the E-step,asthirent model. Another main
contribution of the current paper is that we establish tbecal properties of the proposed
E-MS algorithm, including the (numerical) convergencela algorithm, and consistency
of the limiting model of the E-MS convergence in terms of miaddection. We also inves-
tigate, from a theoretical standpoint, the impact of thesmigdata mechanism (MDM, e.g.,
Little & Rubin 2002) on the performance of the E-MS. Furthers we provide empirical
evidence, in terms of simulation studies and real data arglthat support the theoretical
findings. More specifically, the simulation results compéefinite-sample performance

of the E-MS with existing, ad-hoc, or “ideal” procedures. ¥émsider various scenarios
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in our simulation studies, such as different types of MDMg] ¢he situation that the true
model is not among the candidate models.

It should be noted that, for the most part, there are threemagproaches for model
selection, namely, the information criteria or, more gafigrgeneralized information cri-
teria (GIC; e.g., Nishii 1984, Shibata 1984), the shrinkagghods (Tibshirani 1996, Fan
& Li 2001, among others), and the fence methods (Jetra. 2008). See, for example, a
recent review by Miuller, Scealy and Welsh (2013). Howef@rthe shrinkage methods,
E-MS is the same as the E-M algorithm. This is because thakdge methods combine
variable selection with estimation of the correspondingftcients (the variables with zero
estimated coefficients are dropped from the current modéius, updating the model is
the same as updating the parameter estimates; or, fromeanmiint of view, the model
does not change with the iteration—it is always the full modiberefore, in the subsequent
development we shall use GIC and the fence as main examplesstoate our method.

It should also be pointed out that the current developmeamtder the assumption that
the class of candidate models is finte. Therefore, the metbgg may not be applicable if
the model space is infinite dimensional, such as in seminpetric modeling.

Following the general convention, throughout this papeuse capital letters, e.gy,,
for a random variable, or random vector, and small letteig, g, for the observed, or
realized, value ot” (the only exception is when the observed values or realiaftbg are

entries of a matrix, which, as usual, is denoted with a chigiteer).

3 TheE-MSalgorithm

The E-M is well known for parameter estimation in the pregeotmissing data. On
the other hand, model selection, as another component oélidshtification, may also be

viewed as parameter estimation, with the parameter beagifientification (ID) number
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of] the model and the parameter space being the (ID numbéngpmodel space. Namely,
we combine the parameters with the model under which thenpeteas are defined. So,
at the current stage of the iteration, we have the currentenad., as well as the current
estimates of the parametefs, underM.. Let Q(M) = Q(Y, M, 0,,) be a measure of
lack-of-fit, whereY” represents the complete datd,a candidate model, artd, the vector
of parameters undet/. We take the conditional expectation @{/) under /., with
the parameters undé., 60,, = 6., beingéc, given the observed datg,, denoted by
EA{Q(M)|y,}. Thisis the E-step.

In the next step, we carry out model selection udingQ (M )|y, } as the measure of
lack-of-fit. To do so, we first find@C(M) = infy,,co,, E{Q(M)|y,}, where®,, is the
parameter space undadf. We can us@c(M) in a GIC setting, in which the optimal
model,]\Z/Opt, is found by minimizing).(M) + \,| M| over M e M, the class of candidate
models, wher@,, is a penalty that depends on the sample sizand|M | is the dimension
of M. Alternatively, we may use the fence method (Jiah@l. 2008) based o@C(M).
This is the MS-step, where MS stands for “model selection”e Wen replacéll. by
My, found in the MS-step, anl, by 6,,,;, whered,; is the parameter vector undaf,
corresponding to the minimizer &.{Q (M, )|yo} overf,, € ©y . andreturn to the
E-step. We illustrate the E-MS procedure with some examples

Example 2 (Backcross experimentQuantitative trait loci (QTL) mapping in genetics
has been extensively studied (e.g., Lander and Botsteif, 188hg 1993, Jansen 1993).
More recently, Broman and Speed (2002) modified the BIC aptiexpit to QTL mapping
in backcross experiments. The method is for complete-daadysis only. In practice,
however, missing data are often present. For example, asaned earlier, in the data set
obtained for backcross experiments by the researchers-®Rileside, less than 3% of the
data have the complete records, that is, without the misshges.

Following Broman and Speed (2002), we have a conditionablimegression model
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for the phenotype variablg;, such that, given the marker indicatons, we haveYy; =

> ket 2 jenr, BikTijr + €, Wherer is the number of chromosomes/; is a subset of
{1,...,q} andq is the number of markers on each chromosome,eaigla normal error,
with mean zero and unknown variane& Thee;’s are uncorrelated and also independent
with the X;;,’s. Furthermore, the marker indicatotX,;;, are assumed to be a Markov
chain within each chromosome with X;;;, = 0) = P(X;1;, = 1) = 1/2 (Mendel’s rule)
andP(X; ;11 = 1| X% = 0) = P(X, j41.0 = 0|.Xyjx = 1) = 6, wheref is therecombina-
tion fraction The problem of interest is to identify the subdét= (M, ..., M,), which

Is viewed as a model selection problem as in Broman and SReea).

We consider the E-MS in conjunction with the BIC procedureuelo the high di-
mensionality, we consider the forward/backward (FW/BWEBIrocedure of Broman and
Speed (2002). A detailed description of the latter is givehe Supplementary Mate-
rial (Section A.3). The log-likelihood, under a given mad#, can be expressed &g =
In o+, Wherel, does not depend on the modg},,, = c—0.5{nlogo*+o 72> " | (y;—
—y;00m)%}, ¢ being a constant. Thus, we haB&C (M) = 205 + | M| log(n), wherel,
is the maximized,, (over the parameters). It is easy to show that the MLE, & is the

same as the maximizer f, which does not depend avi. Thus, we have
BIC(M) = —2lpr 41 + |M|log(n) — 20, o< =2l + | M|log(n). (1)

In addition, the FW/BW requires evaluation®86S(y, X') = ming RSS(y, X, ), where

n

RSS(y, X,8) = Y (v —,0)° (2)

=1
with X = (2%)<;<,. Because both (1) and (2) involve missing data, we replaemth

by their conditional expectations under the current mogl&l, and the current parameter
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estimates undet/., before the minimization/maximization. This leads to

RSS.(M|yo, o) = mgn EARSS(Y, X, 5)|Yo, %o }, (3)
BIC.(M|y,, z,) = —2 max Ec(lam,y x|V, o) + | M]log(n), 4)

both of which have closed-form expressions (see Subseatibid of the Supplementary
Material), wherer, andy, denote the observeds andy’s, respectively.

In summary, given/, and the current parameter estimates, the FW/BW, based pon (3)
is used to generate a sequence of models; the BIC, based,as (hen applied to the
sequence generated by the FW/BW to update the model as wedlraseter estimates.

A reasonable initial model is the full model/;. A reasonable initial estimator far
is 0, = proportion of observed cases in whieh;, andz; ;11 ; are different. As for the
initial estimator of3;, the vector of regression coefficients undéy, note that the idea
of least squares (LS) fit in regression is to find the parametémates that minimizes
o {yi — Ee(Yi|z)}?, whereE; denotes expectation undéf;. Due to the missing data, it
is natural to replace this by, ., {; — E¢(Yi|z,)}?, wherel, denotes the subset of indexes
i so thaty; is observed. Furthermore, we halg(Yi|z,) = > i) >0 GikBEe(Xijklao.),
wherez,; denotes the observes for theith subject;E (X, x|z.;) = x5 If the latter is
observed, and an expression of the conditional expectatiarbe easily obtained, with
replaced by%, if 2,5 Is missing. We then run the LS with,: € I, as the responses and
E¢(Xijk|zo4)'s, i € 1, as the predictors, to obtain the initial estima&)b, for G;. The
initial estimator foro?, 62, is the RSS of this LS fit divided by/,| — g

Example 3 (Linear regression).he classical linear regression is a conditional model,
in which the distribution of the covariates (or predictass)ot specified. As is well known,
such a model may not directly work with the E-M algorithm,a@inse of the covariates are
also missing. Little and Rubin (2002) proposed the follayvimodel for the joint distri-

bution of the response and covariates in a linear regresssoippose that the candidate
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predictors can be listed as, ..., z,, 2p11,. .., Tpyq SUCh thatzy, ..., z, are continuous
andz,.1,...,z,., are discrete or categorical (in case there is an intercaptcorre-
sponding constant, is considered as the first discrete/categorical predickanrthermore,
let vy, ..., v, be all the possible (vector-valued) values fQr = (z,41,...,%y1) . Let
z;q4 be thezy corresponding to théth observation, and; . be the vecton(zy, ..., z,)’
corresponding to théth observation, and; = (; ., 7;,)’. The assumptions are: (i)
Y;, X;,i = 1,...,n are independent; (ii) for each X; 4 has the probability distribution
P(X;qa = v.) = 7,1 < r < s, where ther,’s are unknown probabilities such that
S, m = 1; (iii) given X; 4 = v, X; . has a multivariate normal distribution with mean
i and covariance matri®, whereu,, 1 < r < s are unknown vectors, arfd is an un-
known covariance matrix that does not depend-pand (iv) givenz;, Y; is normal with
meanz}3 and variancer?, where3 is an unknown(p + ¢)-dimensional vector of regres-
sion coefficients, ana? is an unknown variance. These assumptions are for the fulbino
More generally, we are interested in a modél, for the conditional distribution (iv). Write
Tinvg = (T ppe Tiara) s @By = (B Bira)’- Then, undeds, (iv) is replaced by (ivA7)
givenz;, Y; ~ N(x; B, o?). The parts (i)—(iii) of the model are unchanged.

Lety, z, x., x4 denote the data for the, x;, =, ., x; 4, respectively, across < i < n.
Then, it can be shown that the complete-data log-likelinoasithe expression

S 1 S n
| = c— g(logg2 +log |€2]) + an logm, — 3 ZZ L, a=vr)

r=1 r=1 i=1
1 n
252 > (i — i), (5)

i=1

X(xi,c - Mr)lQ_l(xi,c - /’LT) -
wherec is a constant. Note that the maximum likelihood is a consé@imaximization
problem, namelymax [ subjectto} °_, 7, = 1. Definel =1+ A(>_°_, 7 — 1). Then,
the MLE of the parameters, plus the Lagrange multipligis a stationary point of.

In Example 2 we considered the E-MS with BIC. To see an altemmalet us now

consider the E-MS in conjunction with the adaptive fence;(4ienget al. 2008). See
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Jiang (2014) for arecent review on the fence methods. Takaitel model,)/,, as the full
model, M;, and letg; be thes underM;. Let E; denote the conditional expectation under
M; and the current estimates of parameters, uddeincluding 3;, o2, ji,, 7,1 < r < s,

and(. Lety,, z, denote the observed =, respectively. By (5), with\/ = M;, we have
Li = EilLlyosas) = c—3logo’ - Z Ee {(Yi = X[ 160)%[yo, 20}, (6)
wherec does not depend ot ando?. From (6), we obtain the updates férando?,
Ge =S58, 6% =n"1{Sy — 8;55S:}, )

So = Z?:l Ef(Yi2|yoa$o)’ S = Z?:l Ef(Xi,in‘yOwch’ Sy = Z?:l Ef(Xi,sz(,f‘yoaxc))-
Furthermore, we have (see Subsection A.4.2 of the Supplanyevaterial)

7-1 Ee1(x, =v Xic 0y Lo E Nr 0y 4o
My = 227}1 f{ (Xl’d 0 : |y }; 'ﬁ-r - s f( |y & ) ) 1 S r S 8, (8)
Zizl Pf(Xz’,d - Ur‘ym xo) Zt:l Ef(Nt‘ym xo)
. 1 s n A A
- n Z Z Ef{l(Xi,d:vr)(Xi,c — i) (Xic — fir)'[Yor To - 9)

r=1 =1
It remains to evaluate the conditional expectations iredlin (7)—(9). Lety,,, zu,

Zem, andzy ,, denote the missing parts of x, z., andxq4, respectively. Although it is
possible to obtain the conditional density; (ym, zm|yo, z,), the result is not a common
distribution (e.g., normal), under which the conditiongbectations can be easily obtained
analytically. Alternatively, one may consider samplingrfr the conditional distribution,
and use the Monte Carlo method to compute the conditionaaapons. To do so, first
note that it is easy to show that one can sample from the joinditional distribution by
sampling independently from the conditional distributioneach subject. To sample from

the subject conditional distribution, note thas ; (Y m, Tim|Vi.o, Tio) X fari(yi, i)

S ! - (vi — i arBu)”
D ) e
r=1
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whereocc means that the expression is up to a functiog; of z; ,, which is considered con-
stant during the sampling of ,,, z; ,. Next, we employ the Metropolized independence
sampler (MIS, e.g., Liu 2004, p. 115), which is a special adbe Metropolis-Hastings
algorithm. We refer the details to Subsection A.4.2 of thp@ementary Material.

The initial estimates ofi,.,1 < r < s,Q, 7,1 <r < s are/lﬁo) = n;; il Lier
1 <r <s,wherel,, = {1 <i<n:uaisobserved and;q = v, }, andn,, = |1, ,|;
QO = ngt Yoy Zien,o{wi,c - /jﬁo)}{xm - ﬂgo)}/’ wherel, = U;_; I, andn, = |I,|,
and#? = #{1 < i <n:x;qobserved and x; 4 = v, }/#{1 <i < n:x;4 observed},

1 < r < s. Furthermore, the initial estimate ¢f is the LS estimate based on the all-
observed data, that iéf(o) = (X!, X.0) ' X ya0 (@ssuming, without loss of generality, that
X!, Xao is nonsingular), wher&',, = (xgﬂ.)iefao with I, = {1 <i < n: x¢;,y; observed,
andy., = (y:)icr,,. The initial estimate 062 is (62)© = |y — Xao B2/ (| Tao] — p — q).

For any candidate modal, let Q(M) = S, — S5, 'S;, whereS, is the same as that
below (7), andS;,; = 1,2 are the same as those below (7) with replaced byz; »;.
Note that the conditional expectatidiy, will be done by the conditional sampling method
mentioned above, with!/ = M,. Run the AF, withQ)()/) being the measure of lack-of-fit.
Denote the model selected by AF By. Let 3 = Sy 1S1, whereS;, j = 1,2 are given
below (7) withz; ; replaced byz;, ;. Next, leto* be given by (7), wheré;, j = 0,1,2 are
given below (7) withz; ¢ replaced byz, ;. Also, letji,, 1 < r < s,Q, 7,1 <r < s be
given by (8), (9) (note that these depend onlyMp = M, but not onl/).

Replacel, by M, and the initial estimates by, 62, ji,,1 < r < s,Q, 7., 1 <1 < s,
and repeat the process. Note that, after this iterationiithe replaced byt ,, evaluated
by the conditional sampling method wiftf = M.

Keep updating the model and parameters iteratively untiveaggence (see below).

Note. The AF procedure is potentially time-consuming due to thednfer bootstrap-

ping (Jianget al. 2008). In this regard, we refer to some recent developmeihproving
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the computational efficiency of the AF. See Panhgl. (2013).
The convergence of the E-MS algorithm, as mentioned abswekey theoretical issue

that we address in the next section.

4 Convergenceand consistency of E-M S

In this section, we state the results regarding two impaxtdheoretical properties of
the E-MS: The numerical convergence and consistency,mnstef model selection, of the
limit of the E-MS convergence. We term the latter as consastef the E-MS. The details,
including proofs and interpretation of conditions, areededd to Subsection A.1.3 of the
Supplementary Material. Also, we shall focus on E-MS witlCGAnd defer similar results
for E-MS with AF to the same subsection in Supplementary kizte

The GIC, which include AIC, BIC, and other information crite is defined as

(M, 0,Y) = Q(M,0,Y)+p(M), (10)

where() is a measure of lack-of-fit that depends/ah a candidate moded, the parameter
vector undeV/ (strictly speaking, it should be denoteddy; we suppress the subscript for
notation simplicity), and”, the vector of complete data, apd) is a penalty function on the
complexity of M. If Y were observed, the model selection would be done by minngizi
c(M,0,Y), first overd € ©,,, the parameter space under, and then oved/ € M, the
space of candidate models. Note that, we have

min min ¢(M,0,Y) = min {eglélﬂ}jQ(Mﬁ,Y) +p(M)} =minc(M,6,Y), (11)

where in the right side minimizatiod,is confined t®,,. Becaus&” contains missing val-
ues, we cannot really do (11). Instead, we replace (10) lopitglitional expectation, given

the vector of observed datg,, under the current mode)/®), and the current parameter
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vector,0®, which is defined undek/®, that is,
E{c¢(M,0,Y)|yo, M®, Q(t)} =E{Q(M,0,Y)|yo, MY, 9“)} + p(M). (12)

(11) is then carried out with(M, 0,Y") replaced by the right side of (12), }(M,0,Y)
replaced bYE{Q(M, 0,Y)|y,, M® 01}, resulting the minimizen/ 1) andgt+b.

Suppose that there is an observed version of (A0, 0, y,) = Qo(M, 0, y,) + p(M).
Denotey = (M, 0), wheref is understood as the parameter vector urideiLet ¥ denote
the model/parameter space for We assume the following regularity conditions.

Al. The model spac®! is finite; the parameter spaég, is compact for anyi/ € M.

A2. For any fixedM; € M,j = 0,1, asf;,0; € Oy, andd; — 6, j = 0,1,
we havel{Q(Mi, 01,Y) — Q(My,601,Y)|yo, Mo, O} — 0 andE{Q(¢1, Y)[yo, Mo, o} —
E{Q(¢1,Y)|yo, Mo, 00} — 0.

A3. For anyM, M, we have
E{Q(M. 0,Y) = Qo(M. 0, yo)lyo, M. 0} < E{Q(M.0,Y) = Qo(M, 0, y,)[yo, M, 0}.

AL AT\ o} Ny = 0, wherel = argmingcq {Qo (¥, yo) +p(M)} and¥; = {¢ €
Uy € a(yn)} with a(yy) = argmingeq [E{Q(4, Y) yo, U1} + p(M)].

A5. |Uy| = 1, where| - | denotes cardinality.

Theorem 1. Under assumption&1-A5, the E-MS with GIC converges globally.

Note. The assumption about the parameter spaces being compAdtriray be re-
moved, with a probability statement being added to the emneh of Theorem 1. This is
because one can often consider a compact subspace of tmegparapace, if the latter
is not compact, and let the subspace expand as the sampleieases (similar to the
method of sieves; e.g., Jiang 1997). Meanwhile, the otharmaptions of Theorem 1 are
expected to hold with probability tending to one, as the damjze increases, under reg-
ularity conditions. Thus, by applying Theorem 1, we coneltioht, with any initial point,

the probability that the E-MS converges goes to one as thelsasize increases. We show
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this with an example in the Supplementary Material (seei@e#.2).

Following the classical assumptions for consistency of engdlection, we assume the
existence of an optimal model/,,, € M, which is a true model that has the minimum
dimension among all true modelsiii. The corresponding true parameter vector is denoted
by 0.pc. Suppose tha is divided into subclassedy(, andM,, such thatMl = M, U
{M,pt } UM,. Here the subscripts u and o stand for “underfit” and “overfgspectively.
We use w.p- 1 for “with probability tending to one”.

Theorem 2. Under the assumptions of Theorem 1, if, in addition, we have
A6. for any M € M,, we have w.p— 1 that Q,(M,Y,) > Qo(Mopt, Oopt: Yo), and
{(p(M) — p(Mop) HQo(M, Yo) — QoMo opt; Yo)} 1 = o0p(1), whereQo (M, y,) =
infpeo,, Qo(M,0,y,); and
A7.foranyM € M,, we have w.p— 1 thatp(M)—p(Mept) > Qo(Mopt, Yo) —Qo(M, Ys),
then, we have, w.p- 1, that the limiting model of the E-MS convergencelis,. In other

words, the E-MS with GIC is consistent.

5 Moresimulation study

We have carried out a number of simulation studies to evaltngt finite-sample perfor-
mance of E-MS as well as its comparison with other strategdese study is presented in
this section. More studies are presented in Section A.6eoStipplementary Material.

We consider the backcross experiment model, describedamigbe 2, Section 3, with
q = 6 andr = 5, so there are 5 chromosomes with 6 markers on each chromo3tae
are 6 true QTLs, which are located at markers 1, 2, 3 on chromesl, markers 1, 2 on
chromosome 2, and marker 1 on chromosome 3. The coefficiettie &#ue markers are
equal, and the value varies according to Table 2; so doegubevalue ofc. The true

value ford is 0.2. The complete data are generated as follows: First genératélarkov
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chainX; with § = 0.2; then generate from N (0, [,,); letY = X, (1,1,1,1,1,1) +e,
whereX,,; has 6 columns corresponding to the true QTLs. Next, we rahdassign 10%
of the values in each column of the data matrix as missings Taves less than 4% of
the complete-data records, on average (similar to the bas&k@xperiment data obtained
by the researchers at UC-Riverside; see Example 2)IJet{1,...,n} \ I, andO;;, =
{1,....n}\ M, 1 <k <r,1<j<gq. Thesubsets’s, M's andO’s are fixed throughout
the simulations. The observed dataare € 1,, andx;;;, i € O, 1 <k <7, 1<j <gq.
We study the performance of E-MS with BIC, as described innixa 2. The full
model M; was used as the initial model. The result is compared witlctmplete-data
BIC (CDBIC), that is, the BIC result using the complete dafae latter is not available,
of course, in practice, but the goal was to see how much losffiafency there is in
the presence of missing data. As another comparison, weihelueled results of same-
data comparison with a standard imputation-based appi®sighworking in conjunction
with the BIC (IMBIC). A description of the IM is provided in $gection A.6.1 (also see
Subsection A.6.4) of the Supplementary Material. Part efIMBIC results are included
in Table 2, and part of the results are deferred to Subse£tiéi of the Supplementary
Material due to the space limitation. We consider the follmpymeasures of performance:
TP —empirical probability of correct identification of exigall the true QTLs (and nothing
else); MC — empirical mean number of correctly identifiecet@TLs (s.d.); and MIC —
empirical mean number of incorrectly identified “QTLs” (9.dIn addition, we compute
the percentage ratio (% Ratio) of the TP of E-MS over the TPBB(T as a measure of
relative efficiency of the E-MS in terms of model selectiorheT Ratio for IMBIC is
computed in a similar way. The results, based on 100 sinmmatins, are presented in
Table 2. It is seen that the E-MS results improve when eithesample size increases, or
the value off (the signal) increases, or the valuecofthe noise) decreases, by all of the

performance measures. This makes sense becausertarggans more information about
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Table 2:Summary of Performance: Backcross Experiment

n # o Method| TP MC(s.d) MIC(s.d) % Ratio

250 1 1 E-MS | 051 5.99(0.10) 0.71(0.91) 82%
IMBIC | 0.38 5.82(0.41) 0.75(0.74) 61%
CDBIC | 0.62 6.00(0.00) 0.47 (0.66)

100 1 1 E-MS |0.12 5.22(0.62) 1.59(1.70) 52%
IMBIC | 0.09 4.68(0.96) 1.42(1.32) 39%
CDBIC | 0.23 5.49 (0.64) 1.22(1.37)

250 0.5 1 [E-MS |0.08 4.50(0.90) 1.12(1.07) 67%
IMBIC | 0.00 3.98(0.80) 1.12(1.07) 0%
CDBIC | 0.12 4.73(0.80) 0.64 (0.78)

250 1 0.1 E-MS |0.53 6.00(0.00) 0.66(0.87) 85%
IMBIC | 0.20 6.00(0.00) 1.03(0.70) 32%
CDBIC | 0.62 6.00(0.00) 0.47 (0.66)

500 1 1 E-MS |0.57 6.00(0.00) 0.60(0.82) 85%
IMBIC | 0.34 5.98(0.14) 0.86(0.83) 51%
CDBIC | 0.67 6.00(0.00) 0.46 (0.72)

18

the true underlying model; larger (or stronger signal) makes it easier to detect the true
underlying model; and smaller (or weaker noise) makes the sample size more effective
and signal relatively stronger. The IMBIC results are natejgomparable to the E-MS,
especially in terms of the % Ratio. In particular, unlike 1S results, the IMBIC results
do not seem to improve whenincreases from 250 to 500 (with the samhando).

More results of simulation studies are presented in the sestion. Furthermore, we

have carried out simulation studies on the performance M3 terms of parameter
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estimation. The results are presented in Subsection AféleGupplementary Material.

6 Missing data mechanism

In a way, there are three cases that the MDM may be involvee. fifét case, case I,
is that the MDM is known, which is rarely the case in practites second case, case Il,
is that the MDM is also of interest, and subject to model gelacthe third case, case lll,
is that the MDM is unknown, but is not of interest; in other @®rin case lll, there is an
underlying MDM, but the latter is something that one wisleawoid dealing with. In our
experience, the third case is encountered most frequengseictice.

The presented E-MS method applies to cases | and Il withoptchange. This is
because, in those cases, the observed data include;hethvhich is what we normally
call “the data” without considering the MDM, and the missohafa indicatorsin;,q. In
other words, the full (observed) data(igs, mina). Under either case | or case Il, one has

a complete specification of the distribution(df,,s, Mina), that is,

£ (Yobos a0 ) = / £ (16) f (i, )i (13)

The first factor inside the integral on the right side of (18)responds to the distribution
of the complete datd; = (Yos, Yinis), WhereY,,;s represents the missing data; the second
factor, f (minaly, ¢), corresponds to the MDM. Hefeand« denote the parameter vectors
that are involved in the distribution &f and the MDM, respectively. Therefore, from a
methodology point of view, there is nothing new and (13) & puspecial case to which the
E-MS applies, that is, a set of data and a distribution fodidia under an assumed model,
a part of which is the MDM. Note that, sometimes, the integrain (13) can be computed
either analytically, or numerically fairly easily. In suchses, the E-MS is not needed; in

other words, the model selection can be carried out by dyrasing the likelihood function
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based on the full data, given by (13), which yields the sameltas the converged E-MS,
had the latter been carried out, at least asymptoticallg¢féms 1 & 2).

A more challenging case seems to be case lll, in which ondesdsted in the model
onY only, and would avoid dealing with the MDM if possible. As adt this case is en-
countered most frequently in practice. Of course, one magyd consider some candidate
models for the MDM, and treat the case the same way as casech;ajoint model is se-
lected, one simply takes the part regarding the distriloudifoy”, which is of main interest.
The question is: How does the latter approach compare to S Ehat focuses on the
Y model only? Another related question is: How is the perforoeeof the E-MS, which
ignores the MDM, affected by the true underlying MDM? In thestion, we address these
guestions from both empirical and theoretical standpoints

We refer to Rubin (1976) and Little & Rubin (2002) for the wkHown theory about
missing data, including the notions of MCAR, MAR, NMAR; angnorable and non-
ignorable MDM. According to Little & Rubin (2002, sec. 6.#)¢ frequentist’s methods of
inference that ignore the MDM are still valid, even if the MOMNnon-ignorable, although
there may be a loss of efficiency. It follows that the E-MS, &gquentist's method, is valid
even without considering the MDM; on the other hand, therg beaa loss of efficiency in
terms of model selection performance. Furthermore, if the MDM is ignorable, there
is no loss of efficiency in any likelihood-based inferencesluding model selection, by

ignoring the MDM. Therefore, the case of interest is whenMiEM is non-ignorable.

6.1 Empirical studies

Let us begin by considering a simple model of the analysisoghdance (ANCOVA)

with two treatment groups and a control variable. The modelle expressed as

Yii = i+ Bri+ ey, (14)
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1 =1,2,j=1,...,k, whereYj; is the responsgj; is the unknown effect for group 3 is
an unknown coefficienty;; is a covariate used as the control variable; ands the error.
Thee;;'s are assumed to be independéf(, o%), wheres? is an unknown variance, and
independent with theX;;’'s. Our interest is in selecting a model fof;. There are four
candidate models:

. (14) with y1; = pp = pandg = 0. The true parameters are= o2 = 1.

I. (14) with 1 = uy = p. The true parameters are= 3 = o2 = 1.

1. (14) with 3 = 0. The true parameters arg = 1, yo = —1, ando? = 1.

IV. (14) with no restriction. The true parameters are= 1, u, = —1, andg3 = o2 = 1.
Again, we consider the E-MS with BIC. We assume that the ibistion of X;; does not
depend on the above models or parameters. Thus, as far as@Ghe Boncerned, only
the conditional log-likelihood,, ., matters. In each simulation run, thg’s are generated
from the standard normal distribution; thg’s are then generated, and thg obtained
under the true model.

We first investigate the impact of different MDMs on the penfiance of E-MS. Assume
that there are no missing;’s but some of the responsés;, are missing. Definé/;,,q;; =
1if Y;; is missing, andV/;,q;; = 0 if Y, is observed. It is assumed that th&, 4 ;;'s are
independent givel. Furthermore, the following MDMs are considered:

A. P(Mina; = 1|y, v) = 1. The truey is 0.5.

B. P(Mina,ij = 1|y, ¢) = h(¢o + Y1 x;;), whereh(u) = e*/(1 + e*). The true parameters
areyy = 0.5,¢; = 0.2

C.P(Mina.ij = 1y, ) = h(vo+1111:), where theu,;’s are the same group effect introduced
above. The tru@’s are the same as in B.

D. P(Minai; = 1|y, %) = h(vo + ¥1y;;). The truey’s are the same as in B.

In a way, the models are motivated by the examples considereittle & Rubin (2002,

ch. 6). The basic idea is to consider different types of MDKIduding ignorable and
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Table 3:E-M S (BIC) under Different MDMs: n - total sample size. Reported are empir-

ical probabilities of true-positive (TP) based on 1,000wdation runs.
A B C D

n 10 50 10 50 10 50 10 50

| | 0.678 0.745 0.650 0.711 0.641 0.650 0.601 0.542
Il {0.727 0.985 0.701 0.988 0.720 0.979 0.736 0.992
Il | 0.415 0.764 0.256 0.531 0.265 0.570 0.291 0.591
IV | 0.327 0.942 0.227 0.798 0.214 0.841 0.239 0.850

non-ignorable missingness. It is clear that both A and B gmeriable. On the other hand,
Cisacase of MCAR, but no distinctness of parameters, amdfthre non-ignorable; D is a
case of NMAR, and hence non-ignorable. As mentioned, oneagmo loss of efficiency
for E-MS under A or B, but the purpose is to see the differemadeu different situations.

The results, based on 1,000 simulation runs for each cormbmaf the model and
MDM, and for two different sample sizes,= 10 andn = 50, wheren = 2k is the total
number of observations, are reported in Table 3. As we cartlse@erformance of E-MS
depends heavily on the underlying true model, but to a mus$eleextent on the MDM.
More specifically, when model | is the true model, the perfance of E-MS somehow
decreases as the MDM gets more complex. On the other hand, ttwaérue model is lll,
or 1V, there is a significant drop in the performance once tH@M/moves away from A,
but not much of a difference between B, C, D. Finally, when eidids the true model, the
performance of the E-MS is fairly stable across all the MDMs.

Another aspect of the performance that seems to be affegtéioedMDM is the im-
provement as the sample size increases. In almost all tles tas performance of E-MS

improves as the sample size gets larger; however, the iraprert is much more signifi-



E-MS Algorithm 23

cantunder II, lll and IV than under I. In fact, in one case uridehen the MDM is NMAR,
the performance even gets worsenagets larger. One explanation is that the MDM is, in
this case, confounded with some of the candidate modeld$ehds to incorrect model se-
lections. In general, missing data reduces the effectivgpsasize. However, additional
covariate data are available under Il, Ill and IV, namelyg t’s (under Il and IV) and
the group indicators (as another covariate, under Il andwhich are not affected by the
missing data. The covariate information helps to improwegarformance as the sample
size increases. In fact, the largest improvement is seeardhgdwhich has both of the
covariates{;; and the group indicator) under the true model.

In our next simulation study, we focus on the efficiency of 5§ih model selection),
and compare its performance with the approach based onltidata-likelihood (13). To
make a fair comparison, both procedures are based on thelBECcandidate models for
f(y|0) are the same as above. The candidate MDMs are A—C plus
E.P(Minai; = 1|y, ¥) = h(yo + Y1 + ox45), Where they,’s are the same as in (14).

A motivation for not using model D as a candidate MDM is thatwaaild like to see what
happens when a NMAR missingness (that is, model D) is notideresd as a candidate
MDM, but is actually at play. Model E also has the featureg {hat is non-ignorable,
and (ii) it is a full model when considered together with A, ®, Let us term the E-MS
with BIC as E-MS, and the full-data BIC as FBIC. Note that, histcase, the FBIC can
be carried out directly without using the E-MS, as notediearMWe compare the E-MS
with FBIC for two cases where the true underlying MDM is amémgcandidates, namely,
[I-B and IV-B, in which case the FBIC would be considered eéfint, and two cases where
the true underlying MDM is not among the candidates: namke,and IV-D, in which
case the FBIC may not be efficient. Note that IV is a full moael f(y|0). We increase
the sample size slightly from the previous simulation, nigme = 40 andn = 80 now.

Results based on 500 simulation runs are reported in Table 4.
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Table 4:Comparison of E-M S and FBIC: n - total sample size. Reported are empirical

probabilities of true-positive (TP) based on 500 simulations.

11-B [I-D IV-B IV-D

n | E-MS FBIC E-MS FBIC E-MS FBIC E-MS FBIC
40| 0.992 0.830 0.992 0.782 0.726 0.878 0.758 0.848
80| 0.996 0.950 0.996 0.934 0.934 0.996 0.978 0.986

Before the results are revealed, one might speculate th$ E+ould outperform FBIC
when the true MDM is not among the candidates, that is, 11-B BAD, and the pattern
would reverse when the true MDM is among the candidates,sh#tB and IV-B. Thus,
the way that the results turn out to be might have surprisetesoes, including ourselves.
However, there are some explanations. First, in FBIC, ors¢ targets the joint model
then marginalize to the model of interest, thatfigy|0). This is not necessarily a better
approach than targeting directly the model of interest., &@eexample, Claeskens and
Hjort (2003). Another example, in the context of parametingation, is the restricted
maximum likelihood (REML; e.g., Jiang 2007), which targiits parameters of direct in-
terest, that is, the variance components. This often waektebthan the straight maximum
likelihood, which estimates all the parameters, some ottwmay be considered nuisance.

Secondly, the BIC is known to have the tendency of over-pengl “larger” models,
and this is especially the case when the full model is theungerlying model (e.g., Jiang
et al. 2008). For E-MS, model IV is, simply, the full model, theredpthe BIC-based E-MS
suffers from over-penalizing. However, model IV is not nesaily (part of) the full model
for FBIC. This is because the full model for FBIC is the joinbdel (IV,E). For example,
suppose that (1V,B) is selected by the FBIC, then, obviqguslg not the full model, even
though it is “full” for the first component. The point being dwis that the E-MS would
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suffer more from over-penalizing than the FBIC once IV istifue underlying model.

Thirdly, the true underlying MDM can affect the performarafeE-MS in positive or
negative ways, as shown by the earlier simulation resultadty if the MDM works in the
right direction, the E-MS can have a “super-performancse’staown in the next study.

In Section 5, the missing data indexes were generated rdgdwhependent of the data;
thus, the MDM was ignorable. We now repeat the simulatiodystut with the missing
data indexes generated according to the following two st@nd et/ q; be the missing
data indicator fory;, andmiyq ;; that forz;;,. Scenario MA: Given the datd andz, (i)
generate thé/,,q;'s independently witP (M,,q; = 1) = 0.1; (ii) generate then,q ;i’'S
independently so that(minqx = 1) = 0.05 if 2,5, = 0, andP(mipaijx = 1) = 0.1 if
z;;; = 1. Scenario MB: Given the datéd andz, (i) generate thé/;,q ;'s independently with
P(Mipa; = 1) = h(¢o + ¢1Y;), whereh(u) = e*/(1 + €*), 1y = —2.5, andyy = 0.1; (ii)
generate theu,q ;'S the same way as Scenario MA. Itis clear that both scenar®aon-
ignorable. Scenario MA is MCAR in terms of thé data, but NMAR in terms of th&’, =
data; Scenario MB is NMAR in terms of both andz data. Thus, in a way, Scenario MB
has a more serious non-ignorable MDM than Scenario MA. Duédospace limitation,
the simulation results are presented in Subsection A.61BefSupplementary Material.
Comparing with the results reported in Table 2, it is seety thasome cases (5 out of 10),
the E-MS performed worse, but in some cases (5 out of 10) tMSEperformed better
(note that these simulations used the same random seedse sesults are completely
comparable). In particular, there are a couple of cases érgoerformance, in which
the E-MS actually outperformed the CDBIC. An interpretatis that the missing data
indicators may carry additional information to the comeldata, which the E-MS is able
to make use of (while the CDBIC cannot), if the MDM functionghe right way.

The apparent interaction between the E-MS and MDM observéte simulation stud-

ies is quite interesting. To demonstrate this theoreyicale explore the connection be-
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tween E-MS and MDM from a large sample point of view.

6.2 Largesampleconsideration

For simplicity, let us assume that the observatidhsire independent Gaussian with
meankE,, 4,,(Y:), whereM indicates the assumed model for the mean, &andhe vector
of parameters unde¥/, and unknown variance?. Consider selection o/ using the E-
MS with BIC, which, at the current iteration, amounts to mirden log{ E.(Qnr|vobs) } +
log(n)| M|, whereQy = >0 {Y; — Eumg,, (Yi)}?, |M] is the dimension o#,,, andE.
denotes conditional expectation under the current modkpanameters under the current
model. Because the penalty tertug(n)|M|, is not affected by the MDM, we can focus
on the first term, which, eventually, leads to consideratibR, (Q /|yons). The derivation
below requires, of course, some regularity conditions.(eligng, Lahiri & Wan 2002);
however, we shall bypass these technical conditions angfor the insight of the result.

Let mina,; denote the missing data indicator. Then, we have
EC(QM|yobs) = Z{yl - EM#Q]\/I (K)}Ql(mind,i:(])
=1

+ Z Ec{Yz - EMﬂM (Yi)}21(mind,i=1)' (15)

=1

Suppose that the current model is correct, but not necssatimal. For example, if the
space of candidate models includes a true model, then theé&del, M, is correct, but
not necessarily optimal in that it may include extraneougsatdes. Furthermore, suppose
that the current estimator of parameters is consistentn,Tie conditional expectation,
E., can be replaced by the true conditional expectafignesulting a difference that is of
lower order. Another situation is when the E-MS results ingistent model selection (see
Theorem 2). Then, asymptotically, one can replegédy E. Furthermore, by Theorem

2 of Jianget al. (2011a), the minimizer of (15), witlk. replaced byE, Our, converges
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in probability to some limiting vector, say,,, and this is true regardless whethdr is

a correct model. Thus, by considering the leading term, wefocaus on (15) withE,
replaced byE, andd,, being the limiting vector. LeP (M4, = 1|y) = 1 — h(y;) be the
true underlying MDM; in other wordsh(y;) = P(Mina; = Oly), wherey is the complete
data. Definer; = E{Y;h(Y;)}/E{h(Y;)} (again,E without subscript represents the true
expectation). It is shown in Seciton A.5 of the Supplemeankdaterial that

E{Ec(Qu|Yors)} = Z{Cz‘—EM,eM(K)}QE{h(K)}

+D_{B(Y) = Baro, ()Y [1 - E{h(¥)}] +6,  (16)

whered consists of lower-order terms, or terms that do not depend/oriLet ), de-
note the optimal model. Then, fad = M, the second term on the right side of (16)

disappears. Thus, we have (again, see Section A.5 of thde€Sneptary Material)

difference in (15) between M and M,
= E{EC(Q]V[D/Obs)} - E{EC(QMoptD/ob8>} + 51

= 9 cor{¥i hYOHE(Y) — Barg, (V) + 6 (17)

whered; denotes terms of lower-order, ang consists of terms of lower-order, or terms
that do not depend on the MDM. (17) is a key result that shows the performance of
the E-MS is influenced by the MDM through its leading term, efmthe larger this term
(i.e., more positive), the easier to distinguish a nonroptimodel from the optimal one. It
is interesting to note that the leading term is a sum of prtejwehere the first factor of the
product,cov{Y;, h(Y;)}, depends on the MDM but not ai/, while the second factor of
the productE(Y;) — Eae,, (Y:), depends o/ but not on the MDM.

Expression (17) may help to explain, for example, the irstigng pattern observed in

Table 3. Note thak(y;) is the probability thay; is observed. Therefore, among the four
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MDMs considered, case D is likely the case that the covaeiane{Y;, h(Y;)}, is largest
in absolute value, but the sign is negative becdi(ge) is decreasing withy; in this case.
Thus, if we denote the differendg,, g, (Y;) — E(Y;) by dys, the summand in (17) can be
written as the product of the positive covarianeey{Y;, 1 — h(Y;)}, andd,,. Note that
dyy is likely to be much larger when? is underfitting than overfitting. Now look at Table
3, case D, withn = 50 to imitate the large sample behavior. Under model |, nonéef t
candidate models are underfitting; thus, th&ir contributions are likely to be relatively
small, hence it is more difficult to identify a non-optimal deb. Similarly, under model
[ll, none of the other models appear to be underfitting. Orother hand, under model II,
models | and Il are underfitting; under model IV, all of thénet models are underfitting.
This explains why the empirical TPs are much higher underetsold and IV. It should
be noted that, as is well known, a BIC-based approach terslgfier when the full model
is the underlying model, which may explain why the empirit&s under model Il are
higher than those under model IV. Similar explanations algoly to cases C and B. The
behavior under case A is somewhat different, and there &nagn explanation. Note that,
under case A, the probability of missing is a constant. lofe$ thatcov{Y;, h(Y;)} = 0.
Therefore, in this case, the leading term in (17) has disaege

7 Real data example

Recall the data set obtained by the UC-Riverside reseachentioned in Section 1.
The gene expression data were originally published byeéitual. (2007). The phenotypic
values of eight quantitative traits of barley were publgsbg Hayest al. (1993). Detailed
description of the experiment can be found in the latterrezfee, which involved 150
double haploid (DH) lines derived from the cross of two sgrivarley varieties, Morex

and Steptoe. The DH lines are considered as the subjects herl there were 495
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SNP markers on seven chromosomes that are under investigakis mentioned, there
are significant missing values in the data so that only 4 ofi@&subjects have complete
genotype records. On the other hand, there are no missings/al the phenotypic data.

We consider a Markov-chain model as in Example 2. Howeverhigh-dimensional
nature of the data presents a problem for the direct apgicat the E-MS, because the
total number of markers (495) is much larger than the sampk (8 = 150). More
specifically, the least squares (LS) fit is unfeasible whemtlimber of predictors is larger
than the sample size. To overcome this difficulty, we useahlewing idea ofconditional
modeling described under a more general setting.

Suppose that, conditional o¥i = (z}),<,<,, ONe has a linear regressidn= X + ¢,
whereY = (Y;)1<i<, are the observations, ard= (¢;),<;<, are the errors such that the
components ot are independent with medn ande is independent oX'. Furthermore,
suppose that = [X) Xo)] with X,y = (X!, )i<i<n,r = 1,2 such thatX(;, Xy
are independent [e.g., Broman & Speed (2002)]. Then, it &y @@ show thatX,) is
independent ofX,), ¢]. Note that we can express the regression model as X )3, +
X(2)32 + €. Without loss of generality, we assume ttat) 3, does not involve an intercept
[which, if exist, belongs toX ) 5]

Now suppose thak;,,i = 1,...,n are independent, and thafX;,) does not depend
oni. Then E(X/0: + €) = E(X;2)' [ Is a constant, sayj,. Lete, = X0 + ¢; —
Bo. It is easy to show that;,i = 1,...,n are independent witl(e;) = 0, andY =
(1, X1y](Bo B1) +e, e being independent ¢f,, X(y)]. In other words, conditional o ;),
we, once again, have a standard linear regression modeltiieserrors are independent
with mean zero, and independent with the predictors).

The point is thatX ;) can be of much lower dimension than. For the barley cross
data, we can leX(;) correspond to markers on any particular chromosome. Théauof

markers on the 7 chromosomes are 60, 78, 81, 60, 93, 56 andspéctively, all of which
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are smaller than the sample size 150. Within each chromgsemapply the E-MS in
conjuction with the IF (Jiangt al. 2011Db; also see Jiang 2014). The number of bootstrap
samples is chosen @ = 100.

It is known that, for high-dimensional data the IF may suffem the so-called dom-
inant factor effect (Jiangt al. 2011b, sec. 3.3). For the most part, this means that the
IF frequency (i.e., the empirical probability of the mostduently selected model; e.g.,
Jiang 2014) tends to be in favor of a lower dimensional mduh tthe true model, if the
“signals” are relatively weak due to the limited sample sikeis problem is dealt with nat-
urally by the E-MS. First we apply the IF, under the full madkht is, all the markers on a
given chromosome, to obtain the IF frequencies at diffedenensions, sayy;, ps, . . ., p;,
wherep; is the IF frequency at dimensigih andg is the total number of markers, for the
chromosome. If the frequencies show a “peak”, that is, thegel < ;7 < ¢ such that
p; > p;j_, andp; > p;,,, the E-MS shall continue; otherwise, we conclude that there
is no more than one QTL on the chromosome. In the latter chsehighest IF frequecy
must take place at the boundary, that is, either at dimermsieror at the highest dimension
corresponding to all the markers on the chromosome. Howasrunlikely that all the
markers are QTLSs; therefore, dimension one is chosen, &8-S stops.

If the frequency plot show a “peak”, and therefore the E-M$%igontinue, we first
look for the last peak, that is, the highest dimension thatesponds to a peak in order to
be conservative. This is similar to the AF (Jiaegal. 2009), where the first significant
peak is chosen in order to determine the cut-off for the fdeag, Jiang 2014). The first
peak for the AF corresponds to the last peak for the IF. Th&enarcorresponding to the
last peak are selected, the current model is updated, anaptteded model is treated as
the (new) full model for the next step of iteration. The prduee is repeated until either
the updated model is identical to the current model, or n& peound during the current

step; in both cases, the current model is chosen as the firddInteor the latter case, when
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no peak is found, we choose the highest dimension, instedoh@nsion one as above in
the initial step. This is because, at this stage, we havadrdetermined that there are
more than one QTLs on the chromosome (the E-MS would not haviinued otherwise);
furthermore, the highest dimension possibly has been addab it no longer corresponds
to all of the markers on the chromosome.

The results for the grain protein phenotype are present&dhbie A.10 of the Supple-
mentary Material. The results show some consistency wihfdlandings of Zharet al.
(2011). For example, the latter authors found that chrommeso2, 3, 5 “seem to control
more genes than other chromosomes”. According to our segbtise three chromosomes
contain nearly 60% of all the QTLs found. In particular, amesomes 3 and 5 are the
top two according to the number of QTLs found. It should beeddhat the number of
QTLs found on a chromosome is not the only thing that reptegée relative importance
of the chromosome; the magnitude of the QTL effect is alsaoirgmt. In this application,

however, our focus is identification of the QTLS, rather tkaimation of the QTL effects.

8 Discussion

George Box once famously said that “essentially, all mode¢swrong, but some are
useful” (Box 1979). Practical use of statistical modelingalves using the model as an
approximation to the real-life problem, rather than théhtfior the problem. Thus, model
selection, correspondingly, should be understood as firiti@ optimal model that most ef-
ficiently approximates the problem of practical interedthAugh, in the simulation studies
presented in this paper, we have looked at cases where $reetrie model among the can-
didate models, we have, indeed, considered situationsanthere is no true model among
the candidate models. More specifically, Ngugtal. (2013) considered a situation where

the true underlying model is not among those consideredraicdae models. Namely, all
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of the candidate models assume that the true QTLs are at dlotlexations of some of the
markers under consideration. In practice, however, thig nw be true; in other words,
the true QTLs may be at locations between the markers. Theesutonsidered the case
where the true QTLs are located in the middle of their flankiragkers; therefore, the true
underlying model is not a candidate model. Neverthelegsgtial was to identify, among
the candidate models, the one that best approximates theniodel in the sense that the
identified markers are closest to the true QTLs. We consid@tteng similar to those of
Nguyenet al. (2013). Our simulation results show that E-MS, here in cogaiion with the
FW/BW BIC (see Section A.3 of the Supplementary Materialtill capable of identify-
ing the best approximating model in case that the true med®bti among the candidates.
See Subsection A.6.2.1 of the Supplementary Material ftailde

Our investigation on the E-MS has revealed other intergginoperties of the proce-
dure that deserve further studies. In particular, theres lmmen studies on adjusting the
penalty parameter in the information criteria to make theetdémore aggressive”, in some
sense. For example, Mueller and Welsh (2005) finds that afreddIC procedure with
the penalty2 log n instead oflog n works better in some cases. Similar findings were re-
ported in Broman & Speed (2002). Mueller and Welsh (201@tséhe problem through a
unified approach by considering the selection curves in @@hich the criterion function
is viewed as a linear function of the penalty parameter. @rother hand, the fence meth-
ods (e.g., Jiang 2014) is able to avoid dealing with the pemgi letting the data speak on
how to choose a cut-off, or a tuning parameter. Potentiatigther way of letting the data
speak in choosing the tuning parameter is through the E-B1Syggested by the simulation
study in Subsection A.6.1 of the Supplementary Materialmilig, as the E-MS iteration
proceeds, one is having a clearer picture about the dat-gemgy mechanism. This would
help one in knowing whether one should be “more aggressiwe"less aggressive”, in

choosing the penalty.
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There has been recent interest in (joint) selection of fixetlrandom effects in mixed
effects models. See Bonddat al. (2010), Ibrahimet al. (2011). The authors of latter
references used Cholesky-type decompositions, whickwahem to use the approach of
shrinkage selection methods. The E-M algorithm is useddth beferences) to deal with
the fact that the random effects are not observable. Seg (84 4) for further discussion.
As noted (see second to last paragraph of Section 2), fonkdge methods, the E-MS
and E-M are the same. Alternatively, one may treat the prolas joint selection of the
fixed effects and variance-covariance structure of theagandffects, as in Mou (2012).
The point is that one may treat the random effects as incamgega, as in the traditional
approach of mixed model analysis via the E-M algorithm (eligng 2007, sec. 4.1.1). The
E-MS procedure developed in the current paper seems toditaligtto the latter approach.
This would be a very interesting problem of future studies.
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