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Invisible fence methods and the identification
of differentially expressed gene sets

Jiming Jiang, Thuan Nguyen and J. Sunil Rao
∗

The fence method (Jiang et al. 2008; Ann. Statist. 36,
1669–1692) is a recently developed strategy for model se-
lection. The idea involves a procedure to isolate a subgroup
of what are known as correct models (of which the optimal
model is a member). This is accomplished by constructing
a statistical fence, or barrier, to carefully eliminate incorrect
models. Once the fence is constructed, the optimal model is
selected from amongst those within the fence according to
a criterion which can be made flexible. The construction of
the fence can be made adaptively to improve finite sam-
ple performance. We extend the fence method to situations
where a true model may not exist or be among the candi-
date models. Furthermore, another look at the fence meth-
ods leads to a new procedure, known as invisible fence (IF).
A fast algorithm is developed for IF in the case of subtrac-
tive measure of lack-of-fit. The main focus of the current pa-
per is microarray gene-set analysis. In particular, Efron and
Tibshirani (2007; Ann. Appl. Statist. 1, 107–129) proposed
a gene set analysis (GSA) method based on testing the sig-
nificance of gene-sets. In typical situations of microarray ex-
periments the number of genes is much larger than the num-
ber of microarrays. This special feature presents a real chal-
lenge to implementation of IF to microarray gene-set anal-
ysis. We show how to solve this problem in this paper, and
carry out an extensive Monte Carlo simulation study that
compares the performances of IF and GSA in identifying dif-
ferentially expressed gene-sets. The results show that IF out-
performs GSA, in most cases significantly, uniformly across
all the cases considered. Furthermore, we demonstrate both
theoretically and empirically the consistency property of IF,
while pointing out the inconsistency of GSA under certain
situations. An application in tracking pathway involvement
in late vs earlier stage colon cancers is considered.

Keywords and phrases: Fast algorithm, Finite sample
performance, Invisible fence, Limited bootstrap, Microar-
ray gene set analysis, Model selection, Signal-consistency,
Subtractive measure.

1. INTRODUCTION

The fence method (Jiang et al. 2008) is a recently devel-
oped strategy for model selection. The idea involves a pro-
cedure to isolate a subgroup of what are known as correct
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models (of which the optimal model is a member). This is
accomplished by constructing a statistical fence, or barrier,
to carefully eliminate incorrect models. Once the fence is
constructed, the optimal model is selected from amongst
those within the fence according to a criterion which can be
made flexible. The construction of the fence can be made
adaptively, leading to the adaptive fence method of Jiang
et al. (2008). Jiang, Nguyen and Rao (2009a) simplified the
(adaptive) fence procedure, in which a fence is constructed
by the inequality

(1) Q̂(M)− Q̂(M̃) ≤ c,

where Q̂(M) = infθM∈ΘM
Q(M, y, θM ), Q is a measure of

lack-of-fit that depends on M , a candidate model, y, the
vector of observations, and θM , the vector of parameters un-
derM ; ΘM is the parameter space underM ; and M̃ is a can-
didate model that minimizes Q̂(M) among all candidate
models, that is, M̃ ∈ M such that Q̂(M̃) = minM∈M Q̂(M)
withM being the space of candidate models. The constant c
on the right side of (1) can be chosen as fixed, or adaptively,
as mentioned. Simulation results showed that the adaptive
method improves finite sample performance of fence dra-
matically at a computational cost (Jiang et al. 2008, Jiang,
Nguyen and Rao 2009a).

A critical assumption in Jiang et al. (2008) is that there
exists a true model among the candidate models. Although
this assumption is necessary in establishing consistency of
the fence, it limits the scope of applications. In practice,
a true model simply may not exist, or exist but not among
the candidate models [in this regard, George Box once said
that “all models are wrong (but some are useful)”]. Further-
more, in many cases, such as the microarray gene-set analy-
sis (see below), the definition of a “model” is, by far, not as
clear as in the traditional sense. To tackle the main objective
of this paper, we need to first extend the fence method.

1.1 Extension of the fence methods

In the following, we do not assume the existence of a true
model among the candidates. Instead, a vector θ∗M ∈ ΘM is
called an optimal parameter vector under M with respect
to the measure Q if it minimizes E{Q(M, y, θM )}, that is,

E{Q(M, y, θ∗M )} = inf
θM∈ΘM

E{Q(M, y, θM )}(2)

≡ Q(M),
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where the expectation is taken with respect to the distri-
bution of y (which does not depend on M but may be un-
known). A true-Q model is a model M ∈ M such that

(3) Q(M) = inf
M ′∈M

Q(M ′).

Note that here the true-Q model is defined as a model
that provides the best approximation, or best fit to the data,
which is not necessarily a true model in the traditional sense.
However, the above definitions are extensions of the tradi-
tional concepts in model selection adopted by Jiang et al.
(2008), among many others. The main difference is that, in
Jiang et al. (2008), a measure of lack-of-fit Q must satisfy
a minimum requirement that E{Q(M, y, θM )} is minimized
when M is a true model and θM a true parameter vector
under M (see examples below). With the extended defini-
tion, the minimum condition is no longer required (because
it is automatically satisfied). We consider two traditional
examples for illustration.

Example 1. (Negative log-likelihood) suppose that the
joint distribution of y belongs to a family of parametric dis-
tributions {PM,θM ,M ∈ M, θM ∈ ΘM}, where PM,θM has
a (joint) pdf fM (·|θM ) with respect to a σ-finite measure μ.
Consider

(4) Q(M, y, θM ) = − log{fM (y|θM )},

the negative log-likelihood function. A model M is called
a true model (in the traditional sense) if y ∼ PM,θM , that is,
the (joint) distribution of y is PM,θM , for some θM ∈ ΘM .
Such a θM is called a true parameter vector. It turns out,
by the properties of the log-likelihood function, that if M
is a true model, then θ∗M = θM , the true parameter vector
under M . Furthermore, by the same argument, it can be
shown that Q(M) is minimized when M is a true model. In
other words, E{Q(M, y, θM )} is minimized when M is a true
model and θM a true parameter vector under M , a property
required by Jiang et al. (2008) for Q to be a measure of lack-
of-fit. Therefore, any true model in the traditional sense is
a true-Q model for the Q defined by (4).

Example 2. (Residual sum of squares (RSS)) consider the
problem of selecting the covariates for a linear model so
that E(y) = Xβ, where X is a matrix of covariates whose
columns are to be selected from a number of candidates
X1, . . . , XK , and β is a vector of regression coefficients.
A candidate model M corresponds to XMβM , where the
columns of XM are a subset of X1, . . . , XK , and βM is
a vector of regression coefficients of suitable dimension. Con-
sider

(5) Q(M, y, βM ) = |y −XMβM |2,

which corresponds to the RSS. A model M is a true model
if E(y) = XMβM for some βM , which is called a true vector

of regression coefficients. It can be shown that the Q de-
fined by (5) has the property that E{Q(M, y, βM )} is min-
imized when M is a true model and βM a corresponding
true vector of regression coefficients. It follows that if M is
a true model that corresponds to XM , then β∗

M = βM , the
true vector of regression coefficients corresponding to XM ;
and any true model is a true-Q model for the Q defined
by (5).

Given a measure of lack-of-fit, Q, for any M ∈ M, let
θ̂M be the minimizer of Q(M, y, θM ) over θM ∈ ΘM , that

is, θ̂M ∈ ΘM and Q(M, y, θ̂M ) = infθM∈ΘM
Q(M, y, θM ) ≡

Q̂(M). Let M̃ ∈ M be such that Q̂(M̃) = infM∈M Q̂(M).
A model M ∈ M is in the fence if (1) holds, where c is
a tuning constant which may be chosen adaptively (Jiang et
al. 2008, Jiang, Nguyen and Rao 2009a). An optimal model
is chosen from those within the fence so that it satisfies
certain criterion of optimality. For example, one criterion
of optimality that is often used is the minimum dimension
criterion, where the dimension of a candidate model is typ-
ically defined as the number of free parameters under the
model.

1.2 Microarray gene-set analysis

One important application area is microarray gene-set
analysis. There has been interest, and studies, on the prob-
lem of identifying differentially expressed (d.e.) groups of
genes, which we call gene-sets, from a set of microarray
experiments (e.g., Subramanian et al. 2005). In particular,
Efron and Tibshirani (2007) proposed a gene set analysis
(GSA) method based on testing the significance of gene-sets.
Suppose that there are N genes measured on n microarrays
under two different experimental conditions, called control
and treatment. The number N is usually large, say, at least
a few thousands, while n is much smaller, say, a hundred or
fewer. Here the interest is to assess the significance of pre-
defined gene-sets, rather than individual genes, in terms of
response to the treatment. The gene-sets are derived from
different sources such as biological pathways. See Efron and
Tibshirani (2007) for a nice discussion on the gene-set ex-
periments as well as existing methods of gene set analysis.
The general procedure of GSA is as follows. First compute
a summary statistic for each gene, for example, the two-
sample t-statistic. Then, a gene-set statistic is computed for
each gene-set based on the summary statistics, for example,
the average of the summary statistics for genes in the gene-
set. The next step is called restandardization, by subtracting
the genewise mean of the summary statistics from each gene-
set statistic and then dividing the difference by the genewise
standard deviation of the summary statistics. Results of re-
standardization are called gene-set scores. The p-values for
each gene-set score and false discovery rates (FDR) applied
to these p-values are then estimated by permutations of the
class labels in the control and treatment. Depending on the
FDR, a number of the gene-sets may be declared significant,
or no gene-set is declared significant.
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1.3 Outline of the paper

Our main objective is to apply the fence methods to mi-
croarray gene-set analysis. So far as we know, the former is
a model selection strategy, while there seems to be very little
modeling, if any, involved in the latter case. The extension
in Subsection 1.1 has made it easier for the fence methods
to adapt new environments, because the existence of a true
model is no longer required. Still, it is not very clear how
to bridge the connection to the current problem. The con-
nection is made in Section 2, when we take another look at
the fence methods. This leads to a new procedure, which we
call invisible fence, or IF. Typical microarray analysis in-
volves high dimensional data. For example, Subramanian et
al. (2005) developed a collection of 522 gene pathways (gene-
sets). If one anticipates a binary selection outcome (yes or
no) for each gene-set, there are a total of 2522 different
overall outcomes to choose from. Therefore, computation is
a major issue in the underlying gene-set analysis. We develop
a fast algorithm for IF to solve the computational problem.

In Section 3 we discuss implementation of IF to gene-
set analysis. In particular, we show how to deal with a few
practical challenges, especially in cases of high-dimensional
data. In Section 4 we carry out an extensive simulation study
that compares the performances of IF and GSA in identi-
fying d.e. gene-sets. The results show that IF outperforms
GSA, in most cases significantly, uniformly across all the
cases considered. Furthermore, the simulation results reveal
an interesting, previously unknown feature of GSA, that is,
the method can breakdown in a certain situation, when the
signals increase in an unbalanced manner. Here signals re-
fer to the absolute values of the treatments in the gene-set
experiment (see Subsection 1.2).

The surprising break-down of GSA leads to the consid-
eration of a new type of theoretical property for a gene-set
identification procedure, called signal-consistency. In Sec-
tion 5 we formally define this concept, and prove that IF is
signal-consistent. An application example on tracking path-
way involvement in late stage versus earlier stage colon can-
cers is considered in Section 6. We conclude with a summary
in Section 7.

2. INVISIBLE FENCE

2.1 Another look at the fence methods

In the adaptive fence procedure, one is supposed to run
the fence (1) at a grid of c’s, say, c1 < · · · < cK , where K is
fairly large (usually ≥100), and choose the optimal c
corresponding to the highest frequency or probability of
selection (see below for more detail). To be more specific,
let us assume that the minimum dimension criterion is used
in selecting the models within the fence. As it turns out,
whatever the c, only a few models are possible results of
the selection. These are the models that minimize Q̂(M)
at different dimensions. To see this, let us assume, for sim-
plicity, that the maximum dimension among the candidate

models is 3. Let M†
j be the model with dimension j such

that cj = Q̂(M†
j ) minimizes Q̂(M) among all models with

dimension j, j = 0, 1, 2, 3. Note that c3 < c2 < c1 < c0
(strictly speaking the <’s should be replaced by ≤’s but let
us assume that the strict inequalities hold for the ease of
illustration). The point is, any c ≥ c0 does not make a differ-
ence in terms of the final model selected by the fence, which
is M†

0 . Similarly, any c1 ≤ c < c0 does not make a difference
in terms of the final model selected by the fence, which is
M†

1 [according to the fence procedure, one selects the model
within the fence that has the minimum dimension and
minimum Q̂(M) among the models within the fence that
have the (same) minimum dimension]; any c2 ≤ c < c1 does
not make a difference in terms of the final model selected
by the fence, which is M†

2 ; and any c3 ≤ c < c2 does not
make a difference in terms of the final model selected by the
fence, which is M†

3 (and any c < c3 leads to non-selection
because no model is in the fence). In conclusion, any fence
methods (adaptive or non-adaptive) will eventually select

a model from one of the four candidates: M†
j , j = 0, 1, 2, 3.

The question then is: Which one?
To solve this problem we use the idea of the adaptive

fence by drawing bootstrap samples. The idea is to select the
model that has the highest probability to best fit the empir-
ical data when controlling the dimension of the model. To
identify such a model we find, for each bootstrap sample, the
best-fitting model at each dimension, that is, M∗†

j , such that

Q̂∗(M∗†
j ) minimizes Q̂∗(M) for all models with dimension j,

where Q̂∗ represents Q̂ computed under the bootstrap sam-
ple. We then compute the (relative) frequency (among the
bootstrap samples) for different models selected, and the
maximum relative frequency, say p∗j , at each dimension j.

Let M∗†
j∗ be the model that corresponds to the maximum p∗j

(over different j’s) and this is the model we select. In other
words, if at a certain dimension we find a model that has
the highest empirical probability to best fit the data, this is
the model we select. As in Jiang et al. (2008), some extreme
cases (in which the relative frequencies are always one) need
to be handled differently (see Section 3).

Although the new method might look quite different from
the fence, it actually uses implicitly the principle of the
(adaptive) fence as explained above. For such a reason, the
new method is called invisible fence, or IF. Once again, the
idea may be interpreted as finding the model that has the
best chance to best fit the empirical data when control-
ling the dimension of the model. This is consistent with the
principle of the adaptive fence, provided that the minimum-
dimension criterion is used in selecting models within the
fence (note that if one does not control the dimension then
the largest model always fits the best, but if one controls
the dimension it is a different game).

An important special case is when there is no parame-
ter vector θM under model M . In this case, we can skip
Q(M, y, θM ) and define the measure Q̂(M) = Q(M, y) in (1)
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directly. For example, in microarray gene-set analysis sup-
pose there are m gene-sets under consideration. Let 1, . . . ,m
denote these gene-sets. A model M corresponds to a subset
of 1, . . . ,m such that the corresponding gene-sets are “for
real” (that is, d.e.), and the rest of the gene-sets are “not
real” (that is, not d.e.). In this case, a model is completely
specified by the subset, so there is no (need to introduce)
θM . Therefore, in this case we can define the Q̂(M) in (1)
directly without having to go through Q(M, y, θM ). This is
the case that we are dealing with in this paper.

2.2 A fast algorithm

As mentioned, computation is a major concern in high
dimension problems. For instance, for the microarray gene-
sets considered above, at a given dimension k (1 ≤ k ≤ m)
one considers any subset of k gene-sets from 1, . . . ,m. If m
is large, as is typically the case, this could result in a large
number of Q̂(M)’s that have to be evaluated, not to mention
that one has to consider a number of different k’s, if not all
possible k’s.

We focus on the situation where there are a (large) num-
ber of candidate elements, such as gene-sets, so that each
candidate model corresponds to a subset of the candidate el-
ements. Let 1, . . . ,m denote the candidate elements. A mea-
sure Q̂ is said to be subtractive if it can be expressed as

(6) Q̂(M) = s−
∑
i∈M

si,

where si, i = 1, . . . ,m are some nonnegative quantities com-
puted from the data, M is a subset of 1, . . . ,m, and s is
some quantity computed from the data that does not de-
pend on M . Typically we have s =

∑m
i=1 si, but the defi-

nition does not impose such a restriction. Also the nonneg-
ativity constraint on the si’s is only to ensure that Q̂(M)
behaves like a measure of lack-of-fit, that is, larger model
has smaller Q̂(M).

For a subtractive measure, the models that minimize
Q̂(M) at different dimensions are found almost immediately.
Let r1, r2, . . . , rm be the ranking of the candidate elements
in terms of decreasing si. Then, the model that minimizes
Q̂(M) at dimension one is r1; the model that minimizes
Q̂(M) at dimension two is {r1, r2}; the model that mini-
mizes Q̂(M) at dimension three is {r1, r2, r3}, and so on.
This is what we call a fast algorithm for IF. Although the
algorithm is very simple and so is the argument, we show
in the next subsection that it applies natually to gene-set
analysis, but first let us point out a few other problems to
which the fast algorithm, and hence the IF, are potentially
applicable.

2.3 Gene-set analysis

Let si be the gene-set statistic, known as the gene-set
score (Efron and Tibshirani 2007; also see Section 1.2),
for the ith gene-set, 1 ≤ i ≤ m. For example, si may be

the maxmean statistic introduced by Efron and Tibshirani
(2007). To compute the maxmeans one first obtains the pos-
itive and negative parts of each genewise summary statistic.
Here the positive part of x ∈ R is x+ = max(x, 0), while
the negative part is x− = −min(x, 0). The means of the
positive and negative parts are then taken for each gene-set,
say, s̄+i and s̄−i , respectively, for the ith gene-set, and
the maxmean for the gene-set is subsequently defined as
si = max(s̄+i , s̄

−
i ). A subtractive measure for gene-set anal-

ysis is then given by (6). It is clear that all the requirements
are satisfied with s =

∑m
i=1 si. Therefore, the fast algorithm

applies to this case.
Efron and Tibshirani (2007) suggested using the restan-

dardized maxmeans. Our simulation results (see Section 4),
however, reveal some potential problems with the restan-
dardization.

Remark 1. (Restandardization when the number of gene-
sets is small) Suppose there are m gene-sets, each with a sin-
gle gene, so that the last gene-set is d.e. and the rest are not.
For simplicity, suppose that one actually observes the true
means of the gene-set scores, which are 0, . . . , 0, a, where
a > 0. Intuitively, one would expect an easier time to de-
tect the d.e. gene-set when a gets larger. If one considers
the gene-set scores without restandardization, the difference
between the d.e. gene-set and any non-d.e. one is a, which
increases with a and is not dependent on m (however, if
the actual gene-set scores are X1, . . . , Xm−1, Xm+ a, where
the Xi’s are independent random variables with means
zero, the probability that the last gene-set score is larger
than any other gene-set scores decreases as m increases).
On the other hand, the restandardized gene-set scores are
−1/

√
m, . . . ,−1/

√
m, (m−1)/

√
m. So, by restandardization

a has disappeared from all the gene-set scores. In particular,
the difference between the d.e. gene-set and any non-d.e. one
is
√
m, which does not depend on a. However, the difference

increases with m, the total number of gene-sets. In conclu-
sion, when the number of gene-sets is large, restandardiza-
tion is likely to improve the performance of gene-set de-
tection; otherwise, if the number of gene-sets is small, re-
standardization may not be a good idea compared to using
gene-set scores without restandardization.

3. GENE-SET IDENTIFICATION

Now we know the fast algorithm applies to gene-set anal-
ysis if the si’s are chosen as the gene-set scores. To be more
specific, let us assume that the maxmeans (Efron and Tib-
shirani 2007) are used as the gene-set scores. In their paper,
Efron and Tibshirani showed that the maxmeans have the
best overall performance as compared to other choices of
gene-set scores (such as the means and absolute means). As
mentioned, each subset of gene-sets corresponds to a model
M , and the best subset of k gene-sets in the sense that it
minimizes Q̂(M) of (6) for all models of dimension k is given
by the top k gene-sets according to the gene-set scores. The
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only thing that needs to be determined is: What is the op-
timal k?

According to Section 2 (second paragraph), the optimal k
is determined by a bootstrap procedure, so the first prob-
lem that arises is how to bootstrap in the current situation.
As in Efron and Tibshirani (2007), the data matrix, X, is
N × n, where N is the number of genes and n the number
of microarrays, or samples. The underlying assumption is
that the samples from the control group are i.i.d., and so
are the samples from the treatment group (but the distri-
butions of the samples from the two groups, of course, may
be different). Note that each sample is a N × 1 vector of
genewise summary statistics. Therefore, a natural approach
is to bootstrap separately from the control and treatment
groups using the original idea of Efron (1979). For example,
suppose there are 50 samples in the control and treatment
groups, respectively. We draw a random sample of size 50
with replacement from 1, . . . , 50, and a random sample of
size 50 with replacement from 51, . . . , 100, and then com-
bine the two samples. The columns of X corresponding to
the combined sample constitutes the bootstrap sample. This
might sound straightforward; however, there is a complica-
tion. As is usually the case in microarray analysis, the di-
mension N of each sample is much higher than the sample
size n. If one has to bootstrap such high dimensional vec-
tors, the quality of bootstrap (in terms of convergence of
the bootstrap distribution to the true underlying distribu-
tion; see Section 5) drops. In other words, bootstrapping
the full N -dimensional columns of X may not yield a good
approximation to the empirical probabilities used for the
determination of k (see Section 2).

3.1 Limited bootstrap

To solve this problem we use the following strategy called
the limited bootstrap. The idea is to bootstrap a small num-
ber of gene-sets initially, and gradually increase the number
of bootstrapped gene-sets if necessary. Here by bootstrap-
ping the gene-sets it means that only the rows of X corre-
sponding to the selected gene-sets (and the columns corre-
sponding to the bootstrap sample) are to be used in deter-
mining k (see below). To do this we need to know (i) what
gene-sets? (ii) how small? and (iii) when to increase? To give
an answer to (i) we use the principle of IF (see Section 2),
that is, the selection is always made among the top gene-
sets. Therefore, for any given number, say, l, the gene-sets
to be bootstrapped are the top l gene-sets by the ranking
of the gene-set scores. The answer to (iii) is suggested by
the relative frequencies of IF, which are similar to those of
the adaptive fence (Jiang et al. 2008). If the highest relative
frequency excluding dimension zero occurs at the highest di-
mension being considered, it is an indication that the num-
ber of bootstrapped gene-sets needs to increase. The answer
to (ii) is, again, motivated by the relative frequencies of IF,
as follows. Suppose that one needs to carry out an all-subset
selection up to dimension K, in which there is 1 model at

dimension zero, K at dimension one, K(K−1)/2 at dimen-
sion two, and so on. Note that the empirical probability or
relative frequency at dimension zero is always one (because
there is only one candidate). Furthermore, a maximum rel-
ative frequency (excluding dimension zero) at dimension K
would be an indication for the need of (iii). Therefore, any
meaningful choice without going to (iii) should correspond
to a peak of the relative frequency “in the middle”. The
smallest K that allows such a peak in the middle is 3. Now
suppose that L gene-sets are bootstrapped. Usually it is not
necessary to consider all possible dimensions up to L, espe-
cially in view of (iii). (The plot of the relative frequencies
against all possible dimensions is typically W-shaped with
the peak in the middle occurring at a fairly low dimension.)
Here we consider all possible dimensions up to [L/2], where
[x] is the integer part of x. It follows that the minimum
number of bootstrapped gene-sets that allows a peak in the
middle when comparing dimensions up to [L/2] is L = 6.

3.2 Test for no gene-set

One difficulty with IF is that, when the highest frequency
occurs at dimension one, the method cannot tell whether it
is one gene-set, or no gene-set (that is d.e.). This has been
observed in empirical studies that in both cases can result in
the frequency situation. Logically, the highest relative fre-
quency does not constitute a “peak”, if it occurs at dimen-
sion one, because the relative frequency at dimension zero
is always 1 (a peak, by definition, is a relative frequency
that occurs at a certain dimension, which is higher than the
relative frequencies at nearby dimensions). An important
rule of the fence is called conservative principle (Jiang et al.
2008) which, in the IF case, says that whenever there are
ties in the highest frequency, one should choose the high-
est dimension that ties for the highest frequency. Thus, if
the highest relative frequency that occurs at dimension one
is 1, by the conservative principle one chooses one gene-set
over no gene-set. This is, however, an exception. What if the
highest relative frequency occurs at dimension one, and it is
less than 1?

To solve this problem we assist IF with a test, called test
for no gene-set, when the situation occurs. The null hypoth-
esis is that no gene-set is d.e. The test statistic is the maxi-
mum of the restandardized maxmeans (Efron and Tibshirani
2007) over all the gene-sets being considered (see Section 6
for a modification in the situation where the total number
of gene-sets, m, is small). The critical value of the test is
obtained by permutations. For example, suppose that there
are 50 microarrays in the control and treatment groups, the
controls being 1, . . . , 50 and treatments 51, . . . , 100. A ran-
dom sample i1, . . . , i100 is drawn without replacement from
1, . . . , 100 (i.e., a random permutation). Then, the new data
matrix obtained by rearranging the columns of X accord-
ing to i1, . . . , i100 is a permutation sample. It is easy to see
the rationale of the proposed test. If the null hypothesis is
false, then at least one of the restandardized maxmeans is
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expected to be higher than the nominal level and so is the
maximum of them. Note that, unlike the GSA test which is
for whether each individual gene-set is significant, our test
is an overall assessment (whether some gene-sets are signif-
icant, or no gene-set is significant).

3.3 Dominant factor

Another problem that arises in gene-set analysis is called
dominant factor. We use an example for illustration. Sup-
pose that two gene-sets are d.e., of which the first is to
a much greater extent than the second. The first gene-set
is then called a dominant factor. What happens is that the
relative frequency of IF at dimension one tends to be (much)
higher than that at dimension two, and hence results in un-
derfit. In other words, in this case, the IF tends to select
the dominant factor and ignore the second gene-set, even
though it is known to be d.e. The dominant factor usually
happens when the sample size is limited—according to the
asymptotic theory of IF, it can be shown (see Jiang, Nguyen
and Rao 2009b) that, as n → ∞, the relative frequency at
dimension two goes to one (and that at any higher dimen-
sion stays strictly less than one) in the above example, so
one would not expect the relative frequency at dimension
one to be (much) higher than that at dimension two, no
matter how dominant the first gene-set is (also recall the
conservative principle; see Subsection 3.2).

Nevertheless, our main concern is finite sample perfor-
mance. Consider, again, the above example. It is observed
that, once the dominant factor is removed, the second gene-
set begins to emerge. Therefore, a potential remedy is to ap-
ply IF, again, to the rest of the gene-sets after the dominant
factor is selected. In other words, the IF procedure is carried
out in a sequential way. Here, clearly, we need a stopping
rule, otherwise there is a danger for overfit. Before a new
round of IF is carried out we need to know whether any of
the remaining gene-sets is d.e., hence a test for no gene-set
(see Subsection 3.2) is performed. Still, there is a (small)
chance that the test result is significant, even if no gene-set
is d.e., and this can happen at any round of IF. Therefore,
theoretically, there is still a chance that the sequential pro-
cedure can go on and on, even if no gene-sets is d.e. after
the initial round. However, IF has provided us other useful
information to stop the process when no gene-sets are d.e.
Recall Subsection 3.1. The idea is to increase the number of
bootstrapped gene-sets until one finds a number, say, L, so
that, when considering dimensions up to [L/2], the highest
frequency does not occur at dimension [L/2]. This indicates
that the number of d.e. gene-sets is no more than [L/2]− 1,
and hence sets up an upper bound for the sequential proce-
dure to stop. In other words, whatever one does, the total
number of selected gene-sets cannot exceed [L/2]− 1.

3.4 An IF algorithm

When everything is put together, we have the following
algorithm. The numerical procedure has incorporated the
fast algorithm of Subsection 2.2.

1. Rank the gene-sets by the gene-set scores.
2. Obtain the bootstrap frequencies for the top gene-sets

(see Subsection 3.1).
3. If the highest bootstrap frequency, p∗, does not occur

at the boundaries of the dimensions considered, stop
and report the top d∗ gene-sets, where d∗ corresponds
to the highest bootstrap frequency p∗.

4. If p∗ occurs at the right boundary of the dimensions
considered, increase the number of bootstrapped gene-
sets by 1, and repeat step 3.

5. If p∗ occurs at the left boundary (i.e., 0) of the di-
mensions considered, test for zero gene-set (see Subsec-
tion 3.2). If the null hypothesis is not rejected, stop, and
report the current gene-sets found (or that no gene-set
is d.e.).

6. If, in step 5, the null hypothesis is rejected, add the
current top gene-set to the current gene-sets found; re-
move the current gene-sets found from the candidate
gene-sets and return to step 1.

3.5 Some notes

As can be seen, the IF procedure relies on ranking of the
gene-sets. A potential problem with the ranking is how to
deal with ties. So far, in either the simulations or the data
analysis, we have not encountered a problem with the ties.
This is because we have been dealing with continuous re-
sponses, and the chance of ties is zero, at least theoretically.
However, if the responses are not continuous (this may hap-
pen even with continuous responses, if some kind of round-
ing is used), there is certainly a chance for ties. For example,
consider the sequence x = 1, 1, 1, 3, 2, then ordered is 1, 2,
3, 5, 4. It is seen that the three tied numbers, 1, 1, 1, receive
the ranks 1, 2, 3. It might seem unfair for the second and
third 1’s to receive the ranks 2 and 3, but the relative fre-
quencies are not based on a single (bootstrap) realization.
So, over a (large) number of bootstrap realizations, the sub-
set corresponding to the 1, 1, 1 is expected to eventually
distinguish itself from the rest of the subsets, and therefore
be selected by the IF.

4. SIMULATION STUDIES

Efron and Tibshirani (2007) carried out an empirical
study, in which the authors simulated 1, 000 genes and 50
samples in each of 2 classes, control and treatment. The
genes were evenly divided into 50 gene-sets, with 20 genes
in each gene-set. The data matrix was originally generated
independently from the N(0, 1) distribution, then the treat-
ment effect was added according to one of the following five
scenarios:

1. All 20 genes of gene-set 1 are 0.2 units higher in class 2.
2. The first 15 genes of gene-set 1 are 0.3 units higher in

class 2.
3. The first 10 genes of gene-set 1 are 0.4 units higher in

class 2.
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Table 1. IF vs GSA - empirical probabilities (in %) of TP (OF, UF)

ρ = 0 ρ = 0.3
Scenario Method One-Gene-Set Two-Gene-Set One-Gene-Set Two-Gene-Set

Null IF 95 (5,0) 95 (5,0) 64 (36,0) 64 (36,0)
GSA 59 (41,0) 59 (41,0) 52 (48,0) 52 (48,0)

1 IF 80 (6,14) 68 (1,31) 80 (16,4) 88 (4,8)
GSA 53 (37,10) 53 (25,22) 61 (36,3) 62 (30,8)

2 IF 88 (5,7) 88 (0,12) 88 (12,0) 97 (2,1)
GSA 67 (32,1) 65 (26,9) 65 (35,0) 66 (32,2)

3 IF 87 (5,8) 84 (0,16) 83 (14,3) 96 (2,2)
GSA 66 (31,3) 68 (24,8) 66 (33,1) 69 (27,4)

4 IF 73 (6,21) 63 (2,35) 75 (15,10) 80 (7,13)
GSA 64 (28,8) 57 (19,24) 66 (29,5) 63 (21,16)

5 IF 87 (6, 7) 84 (0,16) 91 (9,0) 99 (0,1)
GSA 70 (30,0) 76 (17,7) 82 (18,0) 86 (12,2)

4. The first 5 genes of gene-set 1 are 0.6 units higher in
class 2.

5. The first 10 genes of gene-set 1 are 0.4 units higher in
class 2, and the second 10 genes of gene-set 1 are 0.4
units lower in class 2.

We consider the same five scenarios in our simulation
study. In Efron and Tibshirani’s study only the first gene-
set is of potential interest. We expand their one-gene-set
case to a two-gene-set case, in which we duplicate the five
scenarios to the second gene-set.

Also, in Efron and Tibshirani’s study the genes were sim-
ulated independently. We consider, in addition to the inde-
pendent case (ρ = 0), a case where the genes are correlated
with equal correlation coefficient ρ = 0.3. The correlation
is generated by associating with each microarray a random
effect. The genes on the same microarray are then correlated
for sharing the same random effect. Let xij be the (i, j) el-
ement of the data matrix, X, where i represents the gene
and j the microarray, i = 1, . . . , 1, 000, j = 1, . . . , 100. Here
j = 1, . . . , 50 correspond to the controls and j = 51, . . . , 100
the treatments. Then, we have

(7) xij = αj + εij ,

where the αj ’s and εij ’s are independent random effects and
errors that are distributed as N(0, ρ) and N(0, 1 − ρ), re-
spectively. It follows that each xij is distributed as N(0, 1),
and cor(xij , xi′j) = ρ, i 
= i′. The treatment effects are then
added to the right side of (7) for j = 51, . . . , 100 and genes i
in the given gene-set(s), as above.

We compare the performance of IF with GSA in gene-set
identification. In Efron and Tibshirani’s simulation study,
the authors showed that the maxmean has the best over-
all performance as compared with other methods, including
the mean, the absolute mean, GSEA (Gene Set Enrichment
Analysis; Subramanian et al. 2005) and GSEA version of the
absolute mean. Therefore, our comparisons focus on the best
performer of GSA, that is, the maxmean. In addition to the

one-gene-set and two-gene-set cases, each with the five sce-
narios listed above, the simulation comparisons also include
the case where no gene-set is potentially interesting, that is,
no treatment effect is added to any gene-set. This is what
we call the null scenario. For GSA one needs to choose the
FDR as well as the number of permutation samples for the
test of significance of gene-sets. For IF, on the other hand,
one also needs to specify the level of significance as well as
the number of permutation samples for the test for no gene-
set (see Subsection 3.2). The FDR and level of significance
are both chosen as α = 0.05. The number of permutations
for both GSA and IF is 200 [which is the number that Efron
and Tibshirani (2007) used for their simulations].

The first comparison is on the probability of correct iden-
tification, or true-positive (TP). For IF this means that the
gene-sets selected match exactly those to which the treat-
ment effects are added, which we call true gene-sets; simi-
larly, for GSA this means that the gene-sets that are found
significant are exactly those true gene-sets. Table 1 reports
the empirical probability of TP based on 100 simulation
runs. For example, for the Null Scenario, One-Gene-Set case,
with ρ = 0, the numbers mean that for 95 out of the 100
simulation runs, IF selected no (0) gene-sets; while for 59
of the 100 simulation runs, GSA found no (0) gene-sets. As
another example, for Scenario 2, Two-Gene-Set case, with
ρ = 0.3, IF selected the exact two gene-sets, to which the
treatment effects are added, for 97 out of the 100 simula-
tion runs; while GSA found the exact two gene-sets for 66
out of the 100 simulation runs. Note that these are results
of same-data comparisons, that is, for each simulation run,
the results for both methods are based on the same simu-
lated data. Also reported (in the parentheses) are empirical
probabilities of overfit (OF, in the sense that the identified
gene-sets include all the true gene-sets plus some false dis-
coveries) and underfit (UF, in the sense that at least one
of the true gene-sets is not discovered). It appears that IF
has better performance than GSA in terms of TP uniformly
across all the cases and scenarios. While most of the losses
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Table 2. IF vs GSA - empirical MC (s.d.), MIC (s.d.): ρ = 0

Scenario Method One-Gene-Set Two-Gene-Set

Null IF 0 (0), .06 (.27) 0 (0), .06 (.27)
GSA 0 (0), .47 (.61) 0 (0), .47 (.61)

1 IF .86 (.34), .06 (.23) 1.64 (.57), .03 (.17)
GSA .90 (.30), .42 (.57) 1.75 (.50), .33 (.53)

2 IF .93 (.25), .05 (.21) 1.88 (.32), .01 (.10)
GSA .99 (.10), .36 (.55) 1.91 (.28), .30 (.50)

3 IF .92 (.27), .05 (.21) 1.83 (.40), .01 (.10)
GSA .97 (.17), .35 (.55) 1.92 (.27), .26 (.46)

4 IF .79 (.40), .06 (.23) 1.57 (.63), .03 (.17)
GSA .92 (.27), .35 (.55) 1.73 (.50), .25 (.45)

5 IF .93 (.25), .06 (.23) 1.79 (.51), 01 (.10)
GSA 1 (0), .33 (.53) 1.93 (.25), .19 (.41)

for IF are due to UF, OF appears to be the major problem
for GSA. Furthermore, both methods appear to be fairly
robust against correlations between genes.

Tables 2 and 3 report another set of summaries of the
simulation results. Here reported are the mean numbers
(over the simulation runs) of correctly identified gene-sets
(MC) and those of incorrectly identified gene-sets (MIC).
The standard deviations for the mean numbers are also re-
ported (in the parentheses; once again, note that these are
the standard deviations rather than the standard errors—
the latter should be the s.d. divided by

√
100 = 10, and

therefore much smaller). For example, for Scenario 2, Two-
Gene-Set case, with ρ = 0.3, the MC for IF is 1.99 (note
that the true value is 2) with a s.d. of 0.10; the MIC for
IF is 0.04 (there is no true value for MIC but, ideally, it
should be 0) with a s.d. of 0.24. For GSA in this case, the
MC is 1.98 with a s.d. of 0.14; the MIC is 0.35 with a s.d.
of 0.56. It is seen that, for ρ = 0, GSA has higher MC but
also higher MIC compared to IF. This is consistent with the
observation from Table 1 that GSA tends to overfit while IF
tends to underfit. On the other hand, the MC/MIC results
are mixed for ρ = 0.3. Once again, there appear to be little
difference between the case ρ = 0 and ρ = 0.3 for GSA.
As for IF, the empirical MCs and MICs are both higher for
ρ = 0.3, in most cases; however, the change does not seem
to affect the overall performance.

Our next comparison focuses on consistency properties of
both methods. Traditionally, consistency in model identifi-
cation (including parameter estimation and model selection)
involves sample size going to infinity. Such an assumption,
however, is not very realistic in gene-set analysis, because
the sample size n usually is much smaller than the number
of genes under consideration. Therefore, we consider a differ-
ent type of consistency, called signal-consistency. A gene-set
identification procedure is signal-consistent if its probabil-
ity of TP goes to one as the treatment effects, or signals,
increase to infinity. Of course, one may not be able to in-
crease the signals in real-life, but the point is to see if a pro-
cedure works perfectly well in the “ideal situation”, which

Table 3. IF vs GSA - empirical MC (s.d.), MIC (s.d.): ρ = 0.3

Scenario Method One-Gene-Set Two-Gene-Set

Null IF 0 (0), .81 (1.17) 0 (0), .81 (1.17)
GSA 0 (0), .57 (.66) 0 (0), .57 (.66)

1 IF .96 (.19), .22 (.57) 1.92 (.27), .06 (.23)
GSA .97 (.17), .41 (.55) 1.92 (.27), .38 (.54)

2 IF 1 (0), .16 (.50) 1.99 (.10), .04 (.24)
GSA 1 (0), .38 (.54) 1.98 (.14), .35 (.56)

3 IF .97 (.17), .20 (.60) 1.98 (.14), .04 (.19)
GSA .99 (.10), .35 (.50) 1.96 (.19), .31 (.51)

4 IF .90 (.30), .26 (.73) 1.87 (.33), .15 (.38)
GSA .95 (.21), .32 (.48) 1.83 (.40), .30 (.48)

5 IF 1 (0), .13 (.46) 1.99 (.10), 0 (0)
GSA 1 (0), .20 (.45) 1.98 (.14), .12 (.32)

we believe is a basic property, just like consistency in the
traditional sense. To investigate signal-consistency property
of IF and GSA, we expand one of the cases, namely, the
two-gene-set case of Scenario 5, by increasing the treatment
effects in two different ways. First, we increase the signals in
a balanced manner, that is, the signals increase at the same
pace for both gene-sets. Next, we let the signals increase in
an unbalanced manner, so that the pace is much faster for
the first gene-set than for the second one. Table 4 reports
the empirical probabilities of TP based on 100 simulation
runs. Here the signals are expressed in the form of (a, b, c, d),
where the values a, b, c, d are added to the right side of (7)
for 51 ≤ j ≤ 100 and 1st 10 genes of gene-set one, 2nd 10
genes of gene-set one, 1st 10 genes of gene-set two, and 2nd
10 genes of gene-set two, respectively. Case 1 is taken from
the bottom two rows of Table 1 (two-gene-set case), which
serves as a baseline. Then we see what happens when the sig-
nals increase. In cases 1–3, where the signals increase in the
balanced way, both IF and GSA seem to work perfectly well
as both methods show signs of signal-consistency. However,
in cases 1, 4–10, where the signals increase in the unbal-
anced way, the empirical probability drops, and eventually
falls apart for GSA, even with increasing signals. On the
other hand, IF still shines in this situation, having perfect
empirical probabilities of TP.

It is interesting to know what happens to GSA in the lat-
est situation. The problem is restandardization. Efron and
Tibshirani argued that restandardization is potentially im-
portant in that it takes into account the overall distribu-
tion of the individual gene scores. Our simulation studies
also confirmed that restandardization improves finite sam-
ple performance in some cases, not just for GSA but for IF
as well (recall the initial ranking of the gene-sets as well as
the test for no gene-set in IF are based on restandardized
maxmeans). However, in the situation where the gene-set
scores are dominated by, say, a single gene-set, such as the
above, the restandardized gene-set scores may look very dif-
ferent from those based on the permutation samples. Con-
sider, for example, an extreme case where one gene-set is so
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Table 4. IF vs GSA - empirical probabilities (in %) of TP
with increasing signals

ρ = 0 ρ = 0.3
Case # Signals IF GSA IF GSA

1 (0.4,−0.4,0.4,−0.4) 84 76 99 86
2 (0.5,−0.5,0.5,−0.5) 100 88 100 97
3 (1.0,−1.0,1.0,−1.0) 100 100 100 100
4 (1.0,−1.0,0.5,−0.5) 100 97 100 99
5 (1.5,−1.5,0.5,−0.5) 100 88 100 88
6 (2.0,−2.0,0.5,−0.5) 100 64 100 56
7 (2.5,−2.5,0.5,−0.5) 100 26 100 23
8 (3.0,−3.0,0.5,−0.5) 100 10 100 3
9 (3.5,−3.5,0.5,−0.5) 100 2 100 0
10 (4.0,−4.0,0.5,−0.5) 100 0 100 0

dominant that all but one gene-set score is below the overall
mean used in the restandardization. It follows that all but
one restandardized gene-set score is negative. On the other
hand, the critical value for any FDR that is commonly in
use is expected to be, at least, nonnegative. Therefore, a test
based on comparing the restandardized gene-set scores with
the critical value is expected to reject nothing but the null
hypothesis corresponding to the dominant gene-set, and ig-
nore the potential interest of any others (even though some
of them are d.e.).

In introducing the GSA method, Efron and Tibshirani
(2007) considered a situation where the same treatment ef-
fect is added to all the gene-sets. In other words, all the
gene-sets are equally d.e. The authors used this example
to make the point for the need of restandardization. The
claim is that, in this case, there is “nothing special about
any one gene-set”. While the claim is arguable from a prac-
tical point of view, it would be interesting to see how the
two methods, IF and GSA, work in a situation like this.
Thus, as a final comparison, we simulated data according
to Scenario 1 above, except that the 0.2 units are added to
all the gene-sets. If, as the latest authors claimed, there is
nothing special about any gene-set, one expects a procedure
to identify no (zero) gene-set in this case. According to the
results based on 100 simulation runs, when ρ = 0, the em-
pirical probabilities of identifying zero gene-set is 50% for
IF and 47% for GSA; when ρ = 0.3, the corresponding em-
pirical probabilities are 58% for IF and 54% for GSA. So, in
the latest comparison, the two methods performed similarly
with IF doing slightly better.

Finally, regarding computational efficiency of the meth-
ods compared to each other, it takes, for example, 4.0 sec-
onds to run the IF for a single simulation under Scenario 2,
One-Gene-Set case with ρ = 0 (see, for example, Table 1),
as compared to 3.0 seconds to run the GSA for the same
simulation, on a server computer [Intel(R) Core(TM)2 Ex-
treme CPU X9650 @ 3.00GHz]. It should be noted that our
simulation codes for IF are not written by a professional
programmer. Nevertheless, in terms of the computational
efficiency, IF is, at least, comparable to GSA.

5. SIGNAL-CONSISTENCY

In this section we study the signal-consistency property of
IF. Traditionally, consistency is defined under the assump-
tion that the sample size goes to infinity. However, as men-
tioned (see the discussion in Section 4), such an assumption
is not very practical for gene-set analysis. Therefore, we con-
sider the asymptotic property in terms of signal-consistency.
Such a property has been suggested by the simulation re-
sults in the previous section (see Table 4), so it is now time
to establish it. We proceed under the basic assumptions of
Section 3. In particular, we assume that the measure Q̂ is
subtractive, hence (6) holds for some si’s, which we call
gene-set scores. More specifically, we assume that the data
can be expressed as

(8) yjl =

{
μj1 + εjl, 1 ≤ l ≤ n1,
μj2 + εjl, n1 + 1 ≤ l ≤ n,

1 ≤ j ≤ N , where N is the total number of genes; 1 ≤ l ≤ n1

and n1+1 ≤ l ≤ n correspond to the control and treatment,
respectively; μjk, k = 1, 2 are the means of the controls and
treatments, respectively; and n is the sample size (i.e., the
number of microarrays). Let n2 = n− n1. Furthermore, we
assume that the gene-set score si has the expression

(9) si = ψi(δi, ξi),

i = 1, . . . ,m, where m is the total number of (candidate)
gene-sets; δi is an unknown parameter; ξi is a vector of ran-
dom variables that does not depend on δi; and ψi(·, ·) is
a function. Let M0 = {1 ≤ i ≤ m : δi 
= 0}. The gene-sets in
M0 are called differentially expressed (d.e.). We use a simple
example to illustrate.

Example 3. Suppose that there are m gene-sets each with
a single gene (so that N = m). The gene-set scores are the
two-sample t-statistics, that is,

si =
ȳi2 − ȳi1

si,p,y

√
n−1
1 + n−1

2

with

s2i,p,y =
(n1 − 1)s2i1 + (n2 − 1)s2i2

n− 2
,

where ȳi1 = n−1
1

∑n1

l=1 yil, ȳi2 = n−1
2

∑n
l=n1+1 yil,

s2i1 = (n1 − 1)−1
∑n1

l=1(yil − ȳi1)
2 and s2i2 = (n2 −

1)−1
∑n

l=n1+1(yil − ȳi2)
2. It follows that

si =
δi + ε̄i2 − ε̄i1

si,p,ε(n
−1
1 + n−1

2 )1/2
,

which is in the form of (9) with δi = μi2−μi1, ξi = (ξi1, ξi2)
′,

where ξi1 = ε̄i2 − ε̄i1 and ξi2 = si,p,ε

√
n−1
1 + n−1

2 and

ψi(u, v) = (u + v1)/v2 for v = (v1, v2)
′. Note that in this

case ψi does not depend on i.
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Without loss of generality, assume that all the δi’s are
nonnegative. By signal consistency we mean that, as Δ =
mini∈M0 δi → ∞, the probability of identifying (exactly) M0

as the d.e. gene-sets goes to one. Note that, although the
sample size n is not required to go to infinity, it is necessary
that the total number of observations, that is, Nn, goes to
infinity, as Δ → ∞, in order to have signal consistency. We
illustrate this with a simple example.

Example 4. (A counter example) suppose that there are
three gene-sets, each consists of a single gene. Let l = 1, 2 be
the controls and l = 3, 4 the treatments. Let yil, i = 1, 2, 3,
l = 1, 2, 3, 4 be the data so that yil = εil for all i, l except
for i = 1 and l = 3, 4, and y1l = Δ + ε1l, l = 3, 4, where
Δ > 0 andεil’s are independent and distributed as N(0, 1).
The gene-set scores are defined as si = 0.5(yi3 + yi4) −
0.5(yi1 + yi2), i = 1, 2, 3. It is easy to see that si has the
expression (9) with δ1 = Δ, δ2 = δ3 = 0, ξi equal to si
with y replaced by ε, ψi(u, v) = u + v, and M0 = {1}.
First note that there is a positive probability, say, p, such
that 1) all the εil’s are bounded in absolute value by one;
2) minl=3,4 ε2l > maxl=3,4 ε3l; 3) maxl=1,2 ε2l < minl=1,2 ε3l.
Let yl = (yil)i=1,2,3, l = 1, 2, 3, 4. Then, the bootstrap proce-
dure draws samples with replacements, y∗1 , y

∗
2 from {y1, y2},

and y∗3 , y
∗
4 from {y3, y4}. It is easy to see that, under 1)–

3), no matter what the bootstrap samples, one always has
s∗1 > s∗2 ∨ s∗3 and s∗2 > s∗3, if Δ > 4. Therefore, at dimen-
sion two one always selects the gene-sets 1 and 2, hence the
corresponding p∗ is 1. Therefore, by the conservative prin-
ciple, the probability is at least p that two gene-sets will be
selected (note that, here, the full dimension, which is 3, is
not considered in the IF, because the corresponding p∗ is
always one), no matter how large Δ is. It follows that the
IF procedure is not signal consistent in this case.

In the following we assume that the IF frequencies, p∗, are
compared for all dimensions 1 ≤ d ≤ K, where K < m and
increases with m. This is practical because, in practice, one
may not know an upper bound of the number of d.e. gene-
sets. By letting K increase with m it guarantees that the
range of d eventually covers d0 = |M0|. The rate at which K
increases withm is subject to the constraints of the following
assumptions. Let εl = (εjl)1≤j≤N , 1 ≤ l ≤ n. Let P̂ denote
the “empirical distribution” of εl, l = 1, . . . , n that puts the
mass 1/nn1

1 nn2
2 on every point in x = (x1, . . . , xn) ∈ RNn,

where xl = (xjl)1≤j≤N , such that x1, . . . , xn1 ∈ {ε1, . . . , εn1}
and xn1+1, . . . , xn ∈ {εn1+1, . . . , εn}. Note that this is not
necessarily an empirical distribution in the usual sense, be-
cause the εl’s may not be identically distributed, or even
independent.

A1. (D.e. gene-sets) d0 > 0, and the probability goes to
one, as Δ → ∞, that

P̂

(
min
i∈M0

si > max
i/∈M0

si

)
= 1.(10)

A2. (Non-d.e. gene-sets) the probability goes to one that

P̂

(
min
i∈M

si ≥ max
i∈M1\M

si

)
< 1(11)

for every M ⊂ M1 = {1, . . . ,m} \ M0 with 1 ≤ |M | ≤
K − d0.

The first part of A1 states that there is at least one d.e.
gene-set. To see what the second part means, let ε(b) de-
note an arbitrary bootstrap sample from the sampling space

above (that consists of nn1
1 nn2

2 points in RNn). Let y
(b)
l =

μ1 + ε
(b)
l , 1 ≤ l ≤ n1, and y

(b)
l = μ2 + ε

(b)
l , n1 + 1 ≤ l ≤ n,

where μk = (μjk)1≤j≤N , k = 1, 2. Let s
(b)
i be the corre-

sponding si, 1 ≤ i ≤ m. The notation ∀b indicates for
all possible bootstrap samples. To be more specific, con-
sider Example 7. Suppose that the εil’s are independent
and distributed as N(0, 1). Redefine the value of the de-
nominator of si as 1 if it is equal to zero (this change has
no practical impact since the probability that the denomi-

nator is zero is 0). Let U1 = max∀b max1≤i≤m |ε̄(b)i2 − ε̄
(b)
i1 |,

U2 = (n−1
1 + n−1

2 )max∀b max1≤i≤m si,p,ε(b) , and U3 be the

minimum nonzero value of (n−1
1 + n−1

2 )si,p,ε(b) , 1 ≤ i ≤ m,
∀b. For any ρ > 0, find λj > 0, j = 1, 2, 3 such that P(Uj ≤
λj , j = 1, 2, U3 ≥ λ3) > 1−ρ. Let Δρ = λ1(1+1∨λ2/1∧λ3).
It can be shown that Δ > Δρ, Uj ≤ λj , j = 1, 2 and U3 ≥ λ3

imply s
(b)
i > λ1/1 ∧ λ3, i ∈ M0 and s

(b)
i ≤ λ1/1 ∧ λ3,

i /∈ M0 (regardless whether the denominator is zero), ∀b.
Therefore, the probability is at least 1 − ρ that (10) holds,
if Δ > Δρ.

Note that Δ → ∞ is involved in A1 but not in A2, so it
may be wondered what is the limiting process in A2. Recall
the counterexample above (Example 8) showing that the
size of the data, Nn, has to increase in order to have signal
consistency. This is the limiting process implicitly assumed
here. We illustrate A2 with a one-sample problem for the
sake of simplicity (the basic arguments for the two-sample
problem are very similar). Suppose that the gene-set scores
can be expressed as si = Δ1(i=0)+n−1

∑n
l=1 εil, 0 ≤ i ≤ m,

where Δ > 0 and εil’s are i.i.d. with a continuous distribu-
tion. Thus, M0 = {0} in this case. Let A denote the comple-
ment of the event in A2, and Ak,M the complement of (11).
Then, A = ∪K−1

k=1 ∪M⊂{1,...,m},|M |=k Ak,M . Note that

Ak,M =

{
min
i∈M

s
(b)
i ≥ max

i∈{1,...,m}\M
s
(b)
i , ∀b

}

for every M ⊂ {1, . . . ,m} (note that here the gene-set in-
dexes start from 0). Let B (Bk,M ) denote A (Ak,M ) with ≥
replaced by >. It can be shown that Bk,M = {mini∈M εil >
maxi∈{1,...,m}\M εil, 1 ≤ l ≤ n}, ∀M ⊂ {1, . . . ,m}. Fur-
thermore, given 1 ≤ k ≤ K, the sets Bk,M for all M ⊂
{1, . . . ,m} with |M | = k are disjoint, and have the same
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probability, which is

P

(
min

1≤i≤k
εil > max

k+1≤i≤m
εil, 1 ≤ l ≤ n

)

=
n∏

l=1

P

(
min

1≤i≤k
εil > max

k+1≤i≤m
εil

)
= {Cm

k }−n,

where Cm
k is the binomial coefficient of choosing k items

out of m items (that is, Cm
k = m!/k!(m − k)!). It follows

that P(A) = P(B) ≤
∑K−1

k=1

∑
M⊂{1,...,m},|M |=k{Cm

k }−n =∑K−1
k=1 {Cm

k }1−n, which goes to zero if either m, or n, in-
creases, and K increases sufficiently slowly.

Theorem 1. Under assumptions A1 and A2 we have with
probability tending to one as Δ, B → ∞ that (i) p∗ = 1 for
M = M0; and (ii) p∗ < 1 for all M such that d0 < |M | ≤ K;
therefore, by the conservative principle, the IF chooses M0

as the d.e. gene-sets.

The proof is given in the Appendix.

6. AN APPLICATION: TRACKING
PATHWAY INVOLVEMENT IN LATE

STAGE VERSUS EARLIER STAGE COLON
CANCERS

Microarray gene expression data from four distinct colon
tissue samples was collected: Duke’s B, C, D and liver METS
as expressed by the Astler-Coller-Duke’s staging system
(Cohen et al. 1997). The Duke B’s in our data set were actu-
ally Duke BSurvivors comprising patients still alive from the
time of initial diagnosis and represent an intermediate stage
of cancer. Stage C and D tissues represent a progressive
worsening of the disease as the cancer begins to spread from
the innermost tissue layer of the colon wall to the middle tis-
sue layers and to nearby lymph nodes and other parts of the
body; primarily the liver or lung. The liver METS (METS)
represent the most advanced stage and are defined as metas-
tasized Duke D colon cancers where the metstatic site is the
liver (the other common metastatic site is the lung).

The dataset consisted of 104 samples of which 25 were
BSurvivors, 21 were Duke C’s, 35 were Duke D’s and 23 were
liver METS all collected at the Ireland Cancer Center of
Case Western Reserve University. There were a total of N =
59, 618 probe sets (genes) interrogated on each microarray
chip. This data was previously used as a basis for develop-
ment of Bayesian ANOVA for Microarrays (BAM) for de-
tecting differentially expressing (individual) genes (Ishwaran
and Rao 2003, 2005). One can however ask more subtle ques-
tions of the data than simply looking for gene lists that
track different kinds of differential expression patterns (Ish-
waran and Rao, 2005). One question of particular interest to
colon cancer biologists is to see which colon cancer specific
pathways (i.e., groups of genes acting in concert with one
another) seem to be at play when comparing a bad progno-
sis tumor (i.e., liver METS) to a relatively good prognosis

tumor (BSurvivor). Understanding which pathways are dif-
ferentially expressed gives a truer picture of the biological
processes that might be at play in a worsening prognosis.

To this end, we identified 4 colon cancer specific
pathways–namely the glycolysis metabolism pathway, the
hypoxia p53 expression pathway, the TGFβ cell signaling
pathway and an ingenuity pathway analysis (IPA) network
pathway. These pathways were actually hinted at from a
BAM analysis. Specifically, it’s been noted that inhibition
of glycolysis effectively kills colon cancer cells in a hypoxic
environment in which the cancer cells exhibit high glycolyt-
icactivity (Xu et al. 2005). The TGFβ signaling pathway is
involved in the control of several biological processes includ-
ing cell proliferation, differentiation, migration and apop-
tosis. It’s one of the most commonly altered pathways in
human cancers. The connection is as follows: TGFβ sig-
naling downstream targets are relevant to cancer in that
their activation leads to growth arrest. Therefore, TGFβ
serves as a tumor suppressor in normal intestinal epithelium.
Many colorectal cancers end up being resistant to TGFβ in-
duced growth inhibition. Interestingly, during the late stages
of carcinogenesis, TGFβ can act as a tumor promoter as
well. High activity of the pathway is associated with ad-
vanced stages and decreased survival (Xu and Pasche 2007).
The IPA network pathway represents a collection of genes
brought together by ingenuity path analysis after a first fil-
tering of genes using BAM.

The number of genes making up these pathways was 11,
12, 16 and 33 genes, respectively. These gene-sets were sub-
jected to an invisible fence analysis with the following re-
sults. The first round of IF found the p̂∗ for dimension 1 was
0.95, much higher than the p̂∗ for dimensions 2 and 3 (in the
range of 0.40 to 0.50 for each). This effectively ruled out the
higher dimensions (greater than 2; see the end of Subsec-
tion 3.3 and also Subsection 3.4). The IPA network gene set
was identified potentially as differentially expressed (corre-
sponding to the largest gene-set score). The next step of the
analysis involved the test for no gene-set. Due to the small
number of gene-sets (m = 4 in this case), it is more appropri-
ate to use the maxmeans without restandardization for the
test, as Example 6 shows. The test result showed that the
IPA network was significant at the α = 0.05 level. Thus, the
dominant IPA network gene-set was removed and the test-
ing done again. This time, the test was insignificant at the
α = 0.05 level and so the IF selection process was complete.

7. SUMMARY AND DISCUSSION

We extend the fence method to situations where a true
model may not be among the candidate models, and thus
expand the scope of applications of the fence method. Fur-
thermore, we proposed a variation of the (adaptive) fence
method, known as the invisible fence (IF), and established
its consistency properties in terms of increasing signals,
known as signal-consistency. The latter is an appropriate,
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and desirable, asymptotic property for microarray gene-set
anslysis, which is the main application area for IF that we
consider in this paper. We developed a fast algorithm for
IF that solves a high-dimensional computational problem.
We showed how to implement IF for microarray gene-set
analysis. We studied the finite sample performance of IF,
and showed that it outperforms, in most cases significantly,
the GSA method of Efron and Tibshirani (2007), uniformly
across all the cases considered. The simulation results also
demonstrated the signal consistency of IF as well as the sig-
nal inconsistency of GSA in a certain situation. We apply
the IF method to a real data problem of tracking pathway
involvement in late versus earlier stage colon cancers.

R software to implement the gene set analysis using
the invisible fence method is available by contacting the
authors directly.

APPENDIX: PROOF OF THEOREM 1

(i) A1 implies that, with probability tending to one,

mini∈M0 s
(b)
i > maxi/∈M0

s
(b)
i , ∀b, hence mini∈M0 s

∗
i >

maxi/∈M0
s∗i for every bootstrap sample [hereafter s∗i denotes

si computed under a bootstrap sample]. It is easy to see that
the latter is equivalent to that M0 are the top d0 gene-sets
for every bootstrap sample, hence p∗ = 1 for M = M0, with
probability → 1.

(ii) Now suppose that M0 are the top d0 gene-sets. Note
that, for any d > d0 and model M of dimension d, s∗i , i ∈ M
are the top d bootstrapped gene-set scores iff M ⊃ M0, and
s∗i , i ∈ M \ M0 are the top d − d0 bootstrapped gene-set
scores among s∗i , i ∈ M1. Suppose that there is M with
d0 < |M | ≤ K such that the corresponding p∗ is equal to
one. Then, by the above argument, this implies that there
is M ⊂ M1 with 1 ≤ |M | ≤ K − d0 such that mini∈M s∗i ≥
maxi∈M1\M s∗i for every bootstrap sample. Let us see what
is the probability for this to happen. Let b = 1, . . . , B denote
the bootstrap samples, and s∗i,b denote si computed under
the bth bootstrap sample. Let AM (A∗

M,b) denote the event

inside P̂ in (11) (with si replaced by s∗i,b). We have

E

⎡
⎣ max
1≤k≤K−d0

max
M⊂M1,|M |=k

{
1

B

B∑
b=1

1A∗
M,b

− P̂ (AM )

}2
⎤
⎦

(12)

≤
∑

1≤k≤K−d0

∑
M⊂M1,|M |=k

E

⎡
⎣
{

1

B

B∑
b=1

1A∗
M,b

− P̂ (AM )

}2
⎤
⎦

=
∑

1≤k≤K−d0

∑
M⊂M1,|M |=k

E[E{(· · · )2|ε}]

=
1

B

∑
1≤k≤K−d0

∑
M⊂M1,|M |=k

E
[
P̂ (AM ){1− P̂ (AM )}

]

≤ 1

4B

K−d0∑
k=1

Cd1

k ,

where d1 = |M1|. On the other hand, note that

B−1
∑B

b=1 1A∗
M,b

= 1 and P̂ (AM ) < 1 imply

|B−1
∑B

b=1 1A∗
M,b

−P̂ (AM )| ≥ 1/nn1
1 nn2

2 (this is because P̂ is

a discrete probability with increment 1/nn1
1 nn2

2 ). Let E0 de-
note the event that M0 are the top d0 gene-sets, E1 the event
that P̂(AM ) < 1 for allM ⊂ M1 with 1 ≤ |M | ≤ K−d0, and

E2 the event that B−1
∑B

b=1 1A∗
M,b

= 1 for some M ⊂ M1

with 1 ≤ |M | ≤ K − d0. Then, we have

P(p∗ = 1 for some M with d0 < |M | ≤ K)

(13)

≤ P(Ec
0) + P(E2)

≤ P(Ec
0) + P(Ec

1) + P(E1 ∩ E2)
≤ P(Ec

0) + P(Ec
1)

+ P

(
max

1≤k≤K−d0

max
M⊂M1,|M |=k

∣∣∣∣ 1B
B∑

b=1

1A∗
M,b

− P̂ (AM )

∣∣∣∣
≥ 1

nn1
1 nn2

2

)

≤ P(Ec
0) + P(Ec

1) +
(nn1

1 nn2
2 )2

4B

K−d0∑
k=1

Cd1

k ,

by (12). The last term on the right side of (13) is arbitrarily
small by choosing B sufficiently large; the first two terms
go to zero by the result of (i) and A2. This completes the
proof.
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