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Abstract 

This paper considers the problem of selecting nonparametric models for small area estimation, which recently have received 

much attention. We develop a procedure based on the idea of fence method (Jiang, Rao, Gu and Nguyen 2008) for selecting 

the mean function for the small areas from a class of approximating splines. Simulation results show impressive 

performance of the new procedure even when the number of small areas is fairly small. The method is applied to a hospital 

graft failure dataset for selecting a nonparametric Fay-Herriot type model. 
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1. Introduction 

 
Small area estimation (SAE) has received increasing 

attention in recent literature. Here the term small area 

typically refers to a population for which reliable statistics 

of interest cannot be produced due to certain limitations of 

the available data. Examples of small areas include a 

geographical region (e.g., a state, county, municipality, etc.), 

a demographic group (e.g., a specific age ×  sex ×  race 

group), a demographic group within a geographic region, 

etc. In absence of adequate direct samples from the small 

areas, methods have been developed in order to “borrow 

strength”. Statistical models, especially mixed effects 

models, have played important roles in SAE. See Rao 

(2003) for a comprehensive account of various methods 

used in SAE.  

While there is extensive literature on inference about 

small areas using mixed effects models, including esti-

mation of small area means which is a problem of mixed 

model prediction, estimation of the mean squared error 

(MSE) of the empirical best linear unbiased predictor 

(EBLUP; see Rao 2003), and prediction intervals (e.g., 

Chatterjee, Lahiri and Li 2007), model selection in SAE has 

received much less attention. However, the importance of 

model selection in SAE has been noted by prominent 

researchers in this field (e.g., Battese, Harter and Fuller 

1988, Ghosh and Rao 1994). Datta and Lahiri (2001) 

discussed a model selection method based on computation 

of the frequentist’s Bayes factor in choosing between a fixed 

effects model and a random effects model. They focused on 

the following one-way balanced random effects model for 

the sake of simplicity: ,ij i ijy u e= µ + + 1 ,i … m= , ,  

1 ,j … k= , ,  where the iu ’s and ije ’s are normally 

distributed with mean zero and variances 2

uσ  and 2,eσ  

respectively. As noted by the authors, the choice between a 

fixed effects model and a random effects one in this case is 

equivalent to testing the following one-sided hypothesis 

0H : 2 0uσ =  vs 1H :
2 0.uσ >  Note that, however, not all 

model selection problems can be formulated as hypothesis 

testing. Fabrizi and Lahiri (2004) developed a robust model 

selection method in the context of complex surveys. Meza 

and Lahiri (2005) demonstrated the limitations of Mallows’ 

pC  statistic in selecting the fixed covariates in a nested 

error regression model (Battese, Harter and Fuller 1988), 

defined as ,ij ij i ijy x u e′= β + + 1 ,i … m= , , 1 ,ij … n= , ,  

where ijy  is the observation, ijx  is a vector of fixed 

covariates, β  is a vector of unknown regression coef-

ficients, and iu ’s and ije ’s are the same as in the model 

above considered by Datta and Lahiri (2001). Simulation 

studies carried out by Meza and Lahiri (2005) showed that 

the pC  method without modification does not work well in 

the current mixed model setting when the variance 2

uσ  is 

large; on the other hand, a modified pC  criterion developed 

by these latter authors by adjusting the intra-cluster 

correlations performs similarly as the pC  in regression 

settings. It should be pointed out that all these studies are 

limited to linear mixed models, while model selection in 

SAE in a generalized linear mixed model (GLMM) setting 

has never been seriously addressed.  

Recently, Jiang et al. (2008) developed a new strategy 

for model selection, called fence methods. The authors noted 

a number of limitations of the traditional model selection 

strategies when applied to mixed model situations. For 

example, the BIC procedure (Schwarz 1978) relies on the 

effective sample size which is unclear in typical situations of 

SAE. To illustrate this, consider the nested error regression 

model introduced above. Clearly, the effective sample size 

is not the total number of observations 1 ,m
i in n=∑=  neither is 

proportional to ,m  the number of small areas unless all the 

in  are equal and fixed. The fence methods avoid such 
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limitations, and therefore are suitable to mixed model 

selection problems, including linear mixed models and 

GLMMs. The basic idea of fence is to build a statistical 

fence to isolate a subgroup of what are known as the correct 

models. Once the fence is constructed, the optimal model is 

selected from those within the fence according to a criterion 

which can incorporate quantities of practical interest. More 

details about the fence methods are given below.  

The focus of this paper is nonparametric models for 

SAE. These models have received much recent attention. In 

particular, Opsomer, Breidt, Claeskens, Kauermann and 

Ranalli (2007) proposed a spline-based nonparametric 

model for SAE. The idea is to approximate an unknown 

nonparametric small-area mean function by a penalized 

spline (P-spline). The authors then used a connection 

between P-splines and linear mixed models (Wand 2003) to 

formulate the approximating model as a linear mixed model, 

where the coefficients of the splines are treated as random 

effects. Consider, for simplicity, the case of univariate 

covariate. Then, a P-spline can be expressed as  

0 1

1 1

( ) ...

( ) ... ( )

p

p

p p

q q

f x x x

x x+ +

= β + β + + β

+ γ − κ + + γ − κ ,

ɶ

 (1)
 

where p  is the degree of the spline, q  is the number of 

knots, ,jκ 1 j q≤ ≤  are the knots, and ( 0)1 .xx x+ >=  

Clearly, a P-spline is characterized by , ,p q  and also the 

location of the knots. Note that, however, given , ,p q  the 

location of the knots can be selected by the space-filling 

algorithm implemented in R [cover.design()]. But the 

question how to choose p  and q  remains. The general 

“rule of thumb” is that p  is typically between 1 and 3, and 

q  proportional to the sample size, ,n  with 4 or 5 

observations per knot (Ruppert, Wand and Carroll 2003). 

But there may still be a lot of choices given the rule of 

thumb. For example, if 200,n =  the possible choices for q  

range from 40 to 50, which, combined with the range of 1 to 

3 for ,p  gives a total of 33 choices for the P-spline. Our 

new adaptive fence method offers a data-driven approach 

for choosing p  and q  for the spline-based SAE model.  

The rest of the paper is organized as follows. The fence 

methods are described in section 2. In section 3 we develop 

an adaptive fence procedure for the nonparametric model 

selection problem. In section 4 we demonstrate the finite 

sample performance of the new procedure with a series of 

simulation studies. In section 5 we consider a real-life data 

example involving a dataset from a medical survey which 

has been used for fitting a Fay-Herriot model (Fay and 

Herriot 1979). Some technical results are deferred to the 

appendix.  

 

2. Fence methods  
As mentioned, the basic idea of fence is to construct a 

statistical fence and then select an optimal model from those 

within the fence according to certain criterion of optimality, 

such as model simplicity. Let ( )M M MQ Q y= , θ  be a 

measure of lack-of-fit, where y  represents the vector of 

observations, M  indicates a candidate model, and Mθ  

denotes the vector of parameters under .M  Here by lack-of-

fit we mean that MQ  satisfies the basic requirement that 

E( )MQ  is minimized when M  is a true model, and Mθ  the 

true parameter vector under .M  Then, a candidate model 

M  is in the fence if  

,
ˆ ˆ ˆ
M nM M M

Q Q c≤ + σ ,ɶ ɶ  (2) 

where ˆ inf ,
M MM M MQ Qθ ∈Θ= Θ  being the parameter space 

under ,M Mɶ  is a model that minimizes ˆMQ  among 

,M ∈M  the set of candidate models, and 
,

ˆ
M M

σ ɶ  is an esti-

mate of the standard deviation of ˆ ˆ .M M
Q Q− ɶ  The constant 

nc  on the right side of (2) can be chosen as a fixed number 

(e.g., 1)nc =  or adaptively (see below).  

The calculation of ˆMQ  is usually straightforward. For 

example, in many cases MQ  can be chosen as the negative 

log-likelihood, or residual sum of squares. On the other 

hand, the computation of 
,

ˆ
M M

σ ɶ  can be quite challenging. 

Sometimes, even if an expression can be obtained for 

,
ˆ ,
M M

σ ɶ  its accuracy as an estimate of the standard deviation 

cannot be guaranteed in a finite sample situation. Jiang, 

Nguyen and Rao (2009) simplified an adaptive fence 

procedure proposed by Jiang et al. (2008). For simplicity, 

we assume that M  contains a full model, f ,M  of which 

each candidate model is a submodel. It follows that 

f .M M=ɶ  In the simplified adaptive procedure, the fence 

inequality (2) is replaced by  

f

ˆ ˆ
M M nQ Q c− ≤ ,  (3) 

where nc  is chosen adaptively as follows. For each 

,M ∈M  let 0( ) P { ( ) }p M M c M∗ ∗= =  be the empirical 

probability of selection for ,M  where 0 ( )M c  denotes the 

model selected by the fence procedure based on (3) with 

,nc c=  and P∗  is obtained by bootstrapping under f .M  For 

example, under a parametric model one can estimate the 

model parameters under fM  and then use a parametric 

bootstrap to draw samples under f .M  Suppose that B  

samples are drawn, then ( )p M∗  is simply the sample 

proportion (out of a total of B  samples) that M  is selected 

by the fence procedure based on (3) with the given .nc  Let 

max ( ).Mp p M∗ ∗
∈=
M

 Note that p∗  depends on .nc  Let 

nc
∗  be the nc  that maximizes p

∗  and this is our choice. 

Jiang et al. (2008) offers the following explanation of the 

motivation behind adaptive fence. Suppose that there is a 

true model among the candidate models, then, the optimal 

model is the one from which the data is generated, and 
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therefore should be the most likely given the data. Thus, 

given ,nc  one is looking for the model (using the fence 

procedure) that is most supported by the data or, in other 

words, one that has the highest (posterior) probability. The 

latter is estimated by bootstrapping. Note that although the 

bootstrap samples are generated under f ,M  they are almost 

the same as those generated under the optimal model. This 

is because the estimates corresponding to the zero parameters 

are expected to be close to zero, provided that the parameter 

estimators under fM  are consistent. One then pulls off the 

nc  that maximizes the (posterior) probability and this is the 

optimal choice.  

There are two extreme cases corresponding to 0nc =  

and nc = ∞  (i.e., very large). Note that if 0,nc =  then 

1.p∗ =  This is because when 0nc =  the procedure always 

chooses f .M  Similarly, if there is a unique simplest model 

(e.g., model with minimum dimension), say, ,M∗  then 

1p∗ =  for very large .nc  This is because, when nc  is large 

enough, all models are in the fence, hence the procedure 

always chooses ,M∗  if simplicity is used as the criterion of 

optimality for selecting the model within the fence. These 

two extreme cases are handled carefully in Jiang et al. 

(2008) and Jiang et al. (2009). However, as noted by Jiang 

et al. (2008), the procedures to handle the extreme cases, 

namely, the screen tests and baseline adjustment/threshhold 

checking, are rarely needed in practice. For example, in 

most applications there are a (large) number of candidate 

variables, and it is believed that only a (small) subset of 

them are important. This means that the optimal model is 

neither M∗  nor f .M  Therefore, there is no need to worry 

about the extreme cases, and the procedures to handle these 

cases can be skipped. In most applications a plot of p∗  

against nc  is W-shaped with the peak in the middle 

corresponding to .nc
∗  

The left plot of Figure 2 provides an illustration. This is a 

plot of p∗  against nc  for the example discussed in section 

5. The plot shows the typical “W” shape, as described, and 

the peak in the middle corresponds to where the optimal ,nc  

i.e., nc
∗  is.  

Jiang et al. (2009) established consistency of the 

simplified adaptive fence and studied its finite sample 

performance.  

 
3. Nonparametric SAE model selection  

For the simplicity of illustration we consider the 

following SAE model:  

( ) 1i i i i iy f X B u e i … m= + + , = , , ,  (4) 

where iy  is an 1in ×  vector representing the observations 

from the thi  small area; 1( ) [ ( )]
ii ij j nf X f x ≤ ≤=  with ( )f x  

being an unknown (smooth) function; iB  is an in b×  

known matrix; iu  is a 1b ×  vector of small-area specific 

random effects; and ie  is an 1in ×  vector of sampling 

errors. It is assumed that , ,i iu e 1i … m= , ,  are independent 

with (0 ),i iu N G,∼ ( ),i iG G= θ  and (0 ),i ie N R,∼ iR =  

( ),iR θ θ  being an unknown vector of variance components. 

Note that, besides ( ),if X  the model is the same as the 

standard “longitudinal” linear mixed model (e.g., Laird and 

Ware 1982, Datta and Lahiri 2000).  

The approximating spline model is given by replacing 

( )f x  by ( )f xɶ  in (1), where the coefficients β ’s and γ ’s 

are estimated by penalized least squares, i.e., by  

2 2minimizing y X Z| − β − γ | + λ | γ | ,  (5) 

where 1( ) ,i i my y ≤ ≤=  the th( )i j,  row of X  is (1 ijx …, , ,  

),p
ijx  the th( )i j,  row of Z  is 1[( ) ( ) ],p p

ij ij qx … x+ +− κ , , − κ  

1 ,i … m= , , 1 ,ij … n= , ,  and λ  is a penalty, or smoothing, 

parameter. To determine ,λ  Wand (2003) used the follow-

ing interesting connection to a linear mixed model. To 

illustrate the idea, let us consider a simple case in which 

0iB =  (i.e., there is no small-area random effects), and the 

components of ie  are independent and distributed as 
2(0 ).N , τ  If the γ ’s are treated as random effects which 

are independent and distributed as 2(0 ),N , σ  then the 

solution to (5) are the same as the best linear unbiased 

estimator (BLUE) for ,β  and the best linear unbiased 

predictor (BLUP) for ,γ  if λ  is identical to the ratio 
2 2.τ / σ  Thus, the value of λ  may be estimated by the 

maximum likelihood (ML), or restricted maximum like-

lihood (REML) estimators of 2σ  and 2τ  (e.g., Jiang 2007). 

However, there has been study suggesting that this approach 

is biased towards undersmoothing (Kauermann 2005). 

Consider, for example, a special case in which ( )f x  is, in 

fact, the quadratic spline with two knots given by (10). 

(Note that this function is smooth in that it has a continuous 

derivative.) It is clear that, in this case, the best approxi-

mating spline should be ( )f x  itself with only two knots, 

i.e., 2q =  (of course, one could use a spline with many 

knots to “approximate” the two-knot quadratic spline, but 

that would seem very inefficient in this case). However, if 

one uses the above linear mixed model connection, the ML 

(or REML) estimator of 2σ  is consistent only if q→∞  

(i.e., the number of appearances of the spline random effects 

goes to infinity). The seeming inconsistency has two worri-

some consequences: (i) the meaning of λ  may be concept-

tually difficult to interpret; (ii) the behavior of the estimator 

of λ  may be unpredictable.  

The fence method offers a natural approach to choosing 

the degree of the spline, ,p  the number of knots, ,q  and the 

smoothing parameter, λ  at the same time. Note, however, a 

major difference from the situations considered in Jiang 

et al. (2008) and Jiang et al. (2009) in that the true 

underlying model is not among the class of candidate 

models, i.e., the approximating splines (1). Furthermore, the 
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role of λ  in the model should be made clear: λ  controls the 

degree of smoothness of the underlying model. A natural 

measure of lack-of-fit is 2.MQ y X Z= | − β − γ |  However, 
ˆ
MQ  is not obtained by minimizing MQ  over β  and γ  

without constraint. Instead, we have 2ˆ ˆ ˆ ,MQ y X Z= | − β − γ |  

where β̂  and γ̂  are the solution to (5), and hence depends 

on .λ  The optimal λ  is to be selected by the fence method, 

together with p  and ,q  as described below.  

Another difference is that there may not be a full model 

among the candidate models. Therefore, the fence inequality 

(3) is replaced by the following:  

ˆ ˆ
M nM

Q Q c− ≤ ,ɶ  (6) 

where Mɶ  is the candidate model that has the minimum 
ˆ .MQ  We use the following criterion of optimality within the 

fence which combines model simplicity and smoothness. 

For the models within the fence, choose the one with the 

smallest ;q  if there are more than one such models, choose 

the model with the smallest .p  This gives the best choice of 

p  and .q  Once ,p q  are chosen, we choose the model 

within the fence with the largest .λ  Once again, note that λ  

is part of the model M  that is selected (or “estimated”) by 

the fence method. The tuning constant nc  is chosen 

adaptively using the simplified adaptive procedure of Jiang 

et al. (2009), where parametric bootstrap is used for 

computing p∗  (see section 2).  

The following theorem is proved in Appendix. For 

simplicity, assume that the matrix ( )W X Z=  is of full 

rank. Let ,n WW
P I P⊥ = −  where 1

m
i in n=∑=  and WP =  

1( ) .W W W W−′ ′   
Theorem. Computationally, the above fence procedure is 

equivalent to the following: (i) first use the (adaptive) fence 

to select p  and q  using (6) with 0λ =  and ˆM W
Q y P y⊥′=  

(see Lemma below), and same criterion as above for 

choosing ,p q  within the fence; (ii) let 0M ∗  denotes the 

model corresponding to the selected p  and ,q  find the 

maximum λ  such that  

*
0,

ˆ ˆ
nMM

Q Q c∗
λ
− ≤ ,ɶ  (7) 

where for any model M  with the corresponding X  and 

,Z  we have  

2

,

1 1 1

1 1 1

1 1 1 1

1 1 1 1

ˆ ˆ ˆ

ˆ ( )

ˆˆ ( ) ( )

( )

( )

M

q

q

q

Q y X Z

X V X X V y

I Z Z Z y X

X V X X X X Z I Z Z Z X

X V y X y X Z I Z Z Z y

λ λ λ

− − −
λ λ λ

− − −
λλ

− − − −
λ

− − − −
λ

= | − β − γ | ,

′ ′β = ,

′ ′= λ + λ − β ,γ

′ ′ ′ ′ ′= − λ + λ ,

′ ′ ′ ′ ′= − λ + λ ,

 

and nc
∗  is chosen by the adaptive fence procedure described 

in section 2 (Vλ  is defined below but not directly needed 

here for the computation because of the last two equations).  

Note that in step (i) of the Theorem one does not need to 

deal with .λ  The motivation for (7) is that this inequality is 

satisfied when 0,λ =  so one would like to see how far λ  

can go. In fact, the maximum λ  is a solution to the equation 

*
0,

ˆ ˆ .nMM
Q Q c∗

λ
− =ɶ  The purpose of the last two equations is 

to avoid direct inversion of 1 ,nV I ZZ−
λ

′= + λ  whose 

dimension is equal to ,n  the total sample size. Note that Vλ  

does not have a block diagonal structure because of ,ZZ ′  so 

if n  is large direct inversion of Vλ  may be computationally 

burdensome.  

The proof of the Theorem requires the following lemma, 

whose proof is given in Appendix.   
Lemma.  For  any  M   and  ,y ,

ˆ
MQ λ   is  an  increasing 

function of  λ   with  0 ,
ˆ ˆinf .M MQ Qλ> λ=  

 
4. Simulations 

 
We consider an extension of the Fay-Herriot model (Fay 

and Herriot 1979) in a nonparametric setting. The model can 

be expressed as  

( ) 1i i i iy f x v e i … m= + + , = , , ,  (8) 

where , ,i iv e 1i … m= , ,  are independent such that 

(0 ),iv N A,∼ (0 ),i ie N D,∼  where A  is unknown but the 

sampling variance iD  is assumed known. The main 

difference from the traditional Fay-Herriot model is ( ),if x  

where ( )f x  is an unknown smooth function.  

For simplicity we assume ,iD D= 1 .i m≤ ≤  Then, the 

model can be expressed as  

( ) 1i i iy f x i … m= + ε , = , , ,  (9) 

where 2(0 )i Nε , σ∼  with 2 ,A Dσ = +  which is unknown. 

Thus, the model is the same as the nonparametric regression 

model.  

We consider three different cases that cover various 

situations and aspects. In the first case, Case 1, the true 

underlying function is a linear function, ( ) 1 ,f x x= −  

0 1,x≤ ≤  hence the model reduces to the traditional Fay-

Herriot model. The goal is to find out if fence can validate 

the traditional Fay-Herriot model in the case that it is valid. 

In the second case, Case 2, the true underlying function is a 

quadratic spline with two knots, given by  

2 2 2( ) 1 2( 1) 2( 2) 0 3f x x x x x x+ += − + − − + − , ≤ ≤  (10) 

(the shape is half circle between 0 and 1 facing up, half 

circle between 1 and 2 facing down, and half circle between 

2 and 3 facing up). Note that this function is smooth in that 

it has a continuous derivative. Here we intend to investigate 

whether the fence can identify the true underlying function 

in the “perfect” situation, i.e., when ( )f x  itself is a spline. 

The last case, Case 3, is perhaps the most practical situation, 
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in which no spline can provide a perfect approximation to 

( ).f x  In other words, the true underlying function is not 

among the candidates. In this case ( )f x  is chosen as 

0 5sin(2 ),x. π 0 1,x≤ ≤  which is one of the functions 

considered by Kauermann (2005).  

We consider situations of small or medium sample size, 

namely, m = 10, 15 or 20 for Case I, m = 30, 40 or 50 for 

Case 2, and m = 10, 30 or 50 for Case 3. The covariate ix  

are generated from the Uniform[0 1],  distribution in Case 1, 

and from Uniform[0 3],  in Case 2; then fixed throughout 

the simulations. Following Kauermann (2005), we let ix  be 

the equidistant points in Case 3. The error standard deviation 

σ  in (9) is chosen as 0.2 in Case 1 and Case 2. This value is 

chosen such that the signal standard deviation in each case is 

about the same as the error standard deviation. As for Case 3, 

we consider three different values for ,σ 0.2, 0.5 and 1.0. 

These values are also of the same order as the signal standard 

deviation in this case.  

The candidate approximating splines for Case 1 and Case 

2 are the following: p = 0, 1, 2, 3, q = 0 and p = 1, 2, 3, 

q = 2, 5 (so there are a total of 10  candidates). As for Case 

3, following Kauermann (2005), we consider only linear 

splines (i.e., 1);p =  furthermore, we consider the number 

of knots in the range of the “rule of thumb” (i.e., roughly 4 

or 5 observations per knot; see section 1), plus the intercept 

model ( 0)p q= =  and the linear model ( 1,p = 0).q =  

Thus, for 10,m = 0 2 3;q = , ,  for m = 30, q = 0, 6, 7, 8; 

and for 50,m = 0 10 11 12 13.q = , , , ,  

Table 1 shows the results based on 100 simulations under 

Case 1 and Case 2. As in Jiang et al. (2009), we consider both 

the highest peak, that is, choosing nc  with the highest ,p∗  

and 95% lower bound (L.B.), that is, choosing a smaller nc  

corresponding to a peak of p∗  in order to be conservative, if 

the corresponding p∗  is greater than the 95% lower bound of 

the p∗  for any larger nc  that corresponds to a peak of .p∗  It 

is seen that performance of the adaptive fence is satisfactory 

even with the small sample size. Also, it appears that the 

confidence lower bound method works better in smaller 

sample, but makes almost no difference in larger sample. 

These are consistent with the findings of Jiang et al. (2009).  
Table 1 
Nonparametric model selection - Case 1 and Case 2. Reported 
are empirical probabilities, in terms of percentage, based on 

100 simulations that the optimal model is selected 
 

 Case 1 Case 2 

Sample size m ==== 10 m ==== 15 m ==== 20 m ==== 30 m ==== 40 m ==== 50 

Highest Peak 62 91 97 71 83 97 

Confidence L.B. 73 90 97 73 80 96 

 
Table 2 shows the results for Case 3. Note that, unlike 

Case 1 and Case 2, here there is no optimal model (an 

optimal model must be a true model according to our 

definition). So, instead of giving the empirical probabilities 

of selecting the optimal model, we give the empirical 

distribution of the selected models in each case. It is 

apparent that, as σ  increases, the distribution of the models 

selected becomes more spread out. A reverse pattern is 

observed as m  increases. The confidence lower bound 

method appears to perform better in picking up a model 

with splines. Within the models with splines, fence seems to 

overwhelmingly prefer fewer knots than more knots.  
 

Table 2 
Nonparametric model selection - Case 3. Reported are empirical distributions, in terms of percentage, of the selected models 
 

 Sample Size m ==== 10 m ==== 30 m ==== 50  
 # of Knots 0, 2, 3 0, 6, 7, 8 0, 10, 11, 12, 13 
  ( p, q) % ( p, q) % ( p, q) %  

0 2σ = .  Highest Peak (0, 0) 1 (1, 0) 9 (1, 10) 100  
  (1, 0) 31 (1, 6) 91   
  (1, 2) 68    
 Confidence L.B. (1, 0) 24 (1, 0) 9 (1, 10) 100  
  (1, 2) 76 (1, 6) 91  

0 5σ = .  Highest Peak (0, 0) 14 (1, 0) 21 (1, 0) 13  
  (1, 0) 27 (1, 6) 77 (1, 10) 84  
  (1, 2) 56 (1, 7) 2 (1, 11) 2  
  (1, 3) 3   (1, 12) 1  
 Confidence L.B. (0, 0) 8 (1, 0) 8 (1, 0) 2  
  (1, 0) 23 (1, 6) 89 (1, 10) 94  
  (1, 2) 65 (1, 7) 3 (1, 11) 2  
  (1, 3) 4   (1, 12) 2  

1σ =  Highest Peak (0, 0) 27 (0, 0) 15 (0, 0) 10  
  (1, 0) 20 (1, 0) 18 (1, 0) 26  
  (1, 2) 49 (1, 6) 63 (1, 10) 60  
  (1, 3) 4 (1, 7) 4 (1, 11) 2  
      (1, 12) 2  
 Confidence L.B. (0, 0) 20 (0, 0) 1 (0, 0) 2  
  (1, 0) 13 (1, 0) 13 (1, 0) 13  
  (1, 2) 59 (1, 6) 82 (1, 10) 80  
  (1, 3) 8 (1, 7) 4 (1, 11) 2  
      (1, 12) 3  
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Note that the fence procedure allows us to choose not 

only p  and q  but also λ  (see section 3). In each 

simulation we compute ˆ ˆ
λβ = β  and ˆ ˆ ,λγ = γ  given below (7), 

based on the λ  chosen by the adaptive fence. The fitted 

values are calculated by (1) with β  and γ  replaced by β̂  

and ˆ,γ  respectively. We then average the fitted values over 

the 100 simulations. Figure 1 shows the average fitted 

values for the three cases (m = 10, 30, 50) with σ = 0.2 

under Case 3. The true underlying function values, ( )if x =  

0.5 sin(2 ),ixπ 1i … m= , ,  are also plotted for comparison. 

 
5. A real-life data example  

We consider a dataset from Morris and Christiansen 

(1995) involving 23 hospitals (out of a total of 219 

hospitals) that had at least 50 kidney transplants during a 27 

month period (Table 3). The iy ’s are graft failure rates for 

kidney transplant operations, that is, iy = number of graft 

failures ,in/  where in  is the number of kidney transplants at 

hospital i  during the period of interest. The variance for 

graft failure rate, ,iD  is approximated by (0.2) (0.8) ,in/  

where 0.2 is the observed failure rate for all hospitals. Thus, 

iD  is assumed known. In addition, a severity index ix  is 

available for each hospital, which is the average fraction of 

females, blacks, children and extremely ill kidney recipients 

at hospital .i  The severity index is considered as a covariate. 
 
Table 3 

Hospital data from Morris and Christiansen (1995) 
 

Area iy  ix  iD  

1 0.302 0.112 0.055  

2 0.140 0.206 0.053  

3 0.203 0.104 0.052  

4 0.333 0.168 0.052  
5 0.347 0.337 0.047  

6 0.216 0.169 0.046  

7 0.156 0.211 0.046  
8 0.143 0.195 0.046  

9 0.220 0.221 0.044  

10 0.205 0.077 0.044  
11 0.209 0.195 0.042  

12 0.266 0.185 0.041  

13 0.240 0.202 0.041  
14 0.262 0.108 0.036  

15 0.144 0.204 0.036  

16 0.116 0.072 0.035  
17 0.201 0.142 0.033  

18 0.212 0.136 0.032  
19 0.189 0.172 0.031  

20 0.212 0.202 0.029  

21 0.166 0.087 0.029  
22 0.173 0.177 0.027  

23 0.165 0.072 0.025   
Ganesh (2009) proposed a Fay-Herriot model for the 

graft failure rates. as follows: 0 1 ,i i i iy x v e= β +β + +  where 

the iv ’s are hospital-specific random effects and ie ’s are 

sampling errors. It is assumed that ,i iv e  are independent 

with (0 )iv N A,∼  and (0 ).i ie N D,∼  Here the variance 

A  is unknown. Based on the model Ganesh obtained credi-

ble intervals for selected contrasts. However, inspections of 

the raw data suggest some nonlinear trends, which raises the 

question on whether the fixed effects part of the model can 

be made more flexible in its functional form.  

To answer this question, we consider the Fay-Herriot 

model as a special member of a class of approximating spline 

models discussed in section 3. More specifically, we assume  

( ) 1i i i iy f x v e i … m= + + , = , , ,  (11) 

where ( )f x  is an unknown smooth function and everything 

else are the same as in the Fay-Herriot model. We then 

consider the following class of approximating spline models:  

0 1

1 1

ˆ ( ) ...

( ) ... ( )

p

p

p p

q q

f x x x

x x+ +

= β + β + + β

+ γ − κ + + γ − κ  (12)
 

with p = 0, 1, 2, 3 and q = 0 ,1, …, 6 ( 0p =  is only for 

0).q =  Here the upper bound 6 is chosen according to the 

“rule-of-thumb” (because m = 23, so 4m/ = 5.75). Note 

that the Fay-Herriot model corresponds to the case p = 1 

and q = 0. The question is then to find the optimal model, in 

terms of p  and ,q  from this class.  

We apply the adaptive fence method described in section 

3 to this case. Here to obtain the bootstrap samples needed 

for obtaining ,nc
∗  we first compute the ML estimator under 

the model ,Mɶ  which minimizes ˆM W
Q y P y⊥′=  among the 

candidate models [i.e., (12); see Theorem in section 3], then 

draw parametric bootstrap samples under model Mɶ  with 

the ML estimators treated as the true parameters. This is 

reasonable because Mɶ  is the best approximating model in 

terms of the fit, even though under model (11) there may not 

be a true model among the candidate models. The bootstrap 

sample size is chosen as 100.  

The fence method selects the model p = 3 and q = 0, 

that is, a cubic function with no knots, as the optimal model. 

To make sure that the bootstrap sample size B = 100 is 

adequate, we repeated the analysis 100 times, each time 

using different bootstrap samples (recall in the adaptive 

fence one needs to draw bootstrap samples in order to 

determine ,nc
∗  so the question is whether different bootstrap 

samples lead to different results of model selection). All 

results led to the same model: a cubic function with no knots 

(even though the bootstrap-derived intermediate quantities, 

such as p∗  and ,nc
∗  varied across bootstraps). We also ran 

the data analysis using B = 1,000, and selected model 

remained the same. Thus, it appears that the bootstrap 

sample size B = 100 is adequate. The left figure of Figure 2 

shows the plot of p∗  against nc  in the adaptive fence 

model selection.  

 



Survey Methodology, June 2010 9 
 

 

Statistics Canada, Catalogue No. 12-001-X 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Case 3 Simulation. Top figure: Average fitted values for m ==== 10. Middle figure: Average fitted 
values for m ==== 30. Bottom figure: Average fitted values for m ==== 50. In all cases, the dots 
represent the fitted values, while the circles correspond to the true underlying function 

 

A few comparisons are always helpful. Our first 

comparison is to fence itself but with a more restricted space 

of candidate models. More specifically, we consider (12) 

with the restriction to linear splines only, i.e., 1,p =  and 

knots in the range of the “rule of thumb”, i.e., q = 4, 5, 6, 

plus the intercept model ( 0)p q= =  and the linear model 

( 1,p = 0).q =  In this case, the fence method selected a 

linear spline with four knots (i.e., 1,p = 4)q =  as the 

optimal model. The value of λ  corresponding to this model 

is approximately equal to 0.001. The plot of p∗  against nc  

for this model selection is very similar to the left figure of 

Figure 2, and therefore omitted. In addition, the right figure 

of Figure 2 shows the fitted values and curves under the two 

models selected by the fence from within the different 

model spaces as well as the original data points.  

A further comparison can be made by treating (11) as a 

generalized additive model (GAM) with heteroscedastic 

errors. A weighted fit can be obtained with the amount of 

smoothing optimized by using a generalized cross-

validation (GCV) criterion. Here the weights used are 

1 ( )i iw A D= / +  where the maximum likelihood estimate 

for A  is used as a plug-in estimate. Recall that the iD ’s are 

known. This fitted function is also overlayed in the right 

figure of Figure 2. Notice how closely this fitted function 

resembles the restricted space fence fit.  

To expand the class of models under consideration by 

GCV-based smoothing, we used the BRUTO procedure 

(Hastie and Tibshirani 1990) which augments the class of 

models to look at a null fit and a linear fit for the spline 

function; and embeds the resulting model selection (i.e., 

null, linear or smooth fits) into a weighted backfitting 

algorithm using GCV for computational efficiency. 

Interestingly here, BRUTO finds simply an overall linear fit 

for the fixed effects functional form. While certainly an 

interesting comparison, BRUTO’s theoretical properties for 

models like (11) have not really been studied in depth.  

Finally, as mentioned in section 3, by using the 

connection between P-spline and linear mixed model one 

can formulate (12) as a linear mixed model, where the spline 

coefficients are treated as random effects. The problem then 

becomes a (parametric) mixed model selection problem, 

hence the method of Jiang et al. (2009) can be applied. In 

fact, this was our initial approach to this dataset, and the 

model we found was the same as the one by BRUTO. 

However, we have some reservation about this approach, as 

explained in section 3. 

  
  
  
  
  
  
  
  
 f
.x
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 f
.x
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
f.
x
 

   
  
 -
0
.4
  
  
  
0
.0
  
  
 0
.4
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 -
0
.4
  
  
  
0
.0
  
  
 0
.4
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 -
0
.4
  
  
  
0
.0
  
  
  
0
.4
 

 

                         0.2                                  0.4                                0.6                                  0.8                                 1.0 

x 

 

0.0                               0.2                               0.4                              0.6                               0.8                              1.0 

x 

 

   0.0                              0.2                              0.4                              0.6                              0.8                              1.0 

x 



10 Jiang, Nguyen and Rao: Fence method for nonparametric small area estimation 

 

 

Statistics Canada, Catalogue No. 12-001-X 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Left: A plot of p*  against nc  from the search over the full model space. Right: The raw data and the 

fitted values and curves; dots and their curve correspond to the cubic function resulted from the full model 
search; squares and their lines correspond to the linear spline with 4 knots resulted from the restricted 

model search; green X’s and their lines represent the GAM fits 

 
6. Concluding remarks 

 
Although the focus of the current paper is nonparametric 

SAE model selection, our method may be applicable to 

spline-based mixed effects model selection problems in 

other areas, for example, in the analysis of longitudinal data 

(e.g., Wang 2005).  

In the case where a true model exists among the 

candidate models, such as Cases 1 and 2 in section 4, 

consistency of the proposed fence model selection method 

can be established in the same way as in Section 3 of Jiang 

et al. (2009) (although the result of the latter paper does not 

directly apply). However, practically, the situation that non-

parametric modeling is most useful is when a true model 

does not exist, or is not among the candidates, such as Case 

3 in section 4. In this case, no result of consistency can be 

proved, of course. It remains unclear what is a desirable 

asymptotic behavior to study in the latter case.  
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Appendix  

1. Proof of Lemma. Write ,
ˆ( ) .Mg Q λλ =  It can be shown 

(detail omitted) that ( ) 2 ,g y B A B yλ λ λ
′ ′ ′λ = λ  where Aλ =  

1( ) ,B W W BB B−′ ′ ′+λ 1( )B W W W BB B−
λ

′ ′= +λ  with B′ =  

(0 )qI  and ( ).W X Z=  Hence ( ) 0g ′ λ ≥  for 0.λ >  

Also ˆ
M MQ Q, λ →  as 0.λ →  

2. Proof of Theorem. Consider the fence inequality  

, ,
ˆ ˆ
M nM

Q Q cλ λ
− ≤ ,ɶɶ  (A.1) 

where ( )M, λ  minimizes ,
ˆ .MQ λ  Also consider the fence 

inequality using ˆ ,M W
Q y P y⊥′=  which is  

ˆ ˆ
M nM

Q Q c− ≤ .ɶ  (A.2) 

By Lemma, we must have 0,λ =  and ,M M= ɶ  hence 

,
ˆ ˆ .
M M

Q Q
λ
= ɶ  It follows, again by Lemma, that for the same 

,nc  (A.2) holds if and only if (A.1) holds for some .λ  

Therefore, the models within the fence, in terms of p  and 

,q  are the same under both procedures. It is then easy to 

see, according to the selection criterion, that the same model 

0 0 ( ),nM M c=  in terms of p  and ,q  will be selected under 

both procedures for the given .nc  It then follows that the nc
∗  

selected using the adaptive procedure will be the same under 

both procedures. Then, once again using the above 

argument, the optimal model 0 ,M ∗  in terms of p  and ,q  

will be the same under both procedures.  

The formulae below (7) can be derived using the 

expressions of BLUE and BLUP (e.g., Jiang 2007, §2.3.1) 

and the following identity (e.g., Sen and Srivastava 1990, 

page 275): If U  is n q×  and V  is ,q n×  then 
1 1 1 1 1 1( ) ( )qP UV P P U I VP U VP− − − − − −+ = − +  so long as 

the inverses exist.  
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