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a b s t r a c t

In this short note, we propose a simplified adaptive fence procedure that reduces the
computational burden of the adaptive fence procedure proposed by Jiang et al. [Jiang, J.,
Rao, J.S., Gu, Z., Nguyen, T., 2008. Fence methods for mixed model selection. Ann. Statist.
36, 1669–1692] for mixed model selection problems. The consistency property of the new
procedure is established. Simulation results show that the new procedure performs very
well in a small sample situation. The method is applied to a well-known data set in small
area estimation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Mixed models are widely used in practice. While there is an extensive literature on inference about mixed models,
including linear and generalized linear mixed models (e.g., Jiang (2007)), the literature on mixed model selection is rather
sparse. Only recently have some useful results emerged. See Datta and Lahiri (2001), Jiang and Rao (2003), Fabrizi and Lahiri
(2004), Meza and Lahiri (2005) and Vaida and Blanchard (2005), among others. As pointed out by Jiang et al. (2008), model
selection in the context of mixed effects models is a nonconventional problem. The authors noted a number of limitations of
the traditionalmodel selection strategieswhen applied tomixedmodel situations. For example, the BIC procedure (Schwarz,
1978) relies on the effective sample sizewhich is unclear in typical situations ofmixedmodels. To overcome such difficulties,
the authors developed a new strategy for model selection, called fence methods. The basic idea is to build a statistical fence
to isolate a subgroup of what are called correct models. Once the fence is constructed, the optimal model is selected from
those within the fence according to a criterion which can incorporate quantities of practical interest. Let QM = QM(y, θM) be
a measure of lack-of-fit, where y represents the vector of observations,M indicates a candidate model, and θM denotes the
vector of parameters underM . Here by lack-of-fit we mean that QM satisfies the basic requirement that E(QM) is minimized
whenM is a true model, and θM the true parameter vector underM . Then, a candidate modelM is in the fence if

Q̂M ≤ Q̂M̃ + cσ̂M,M̃ , (1)

where Q̂M = infθM∈ΘM QM ,ΘM being the parameter space underM , M̃ is a model that minimizes Q̂M amongM ∈ M, the set
of candidate models, and σ̂M,M̃ is an estimate of the standard deviation of Q̂M − Q̂M̃ . The constant c on the right side of (1)
can be chosen as a fixed number (e.g., c = 1) or adaptively.
The calculation of Q̂M is usually straightforward. For example, in many cases QM can be chosen as the negative log-

likelihood, or residual sum of squares. On the other hand, the computation of σ̂M,M̃ can be quite challenging. Sometimes,
even if an expression can be obtained for σ̂M,M̃ , its accuracy as an estimate of the standard deviation cannot be guaranteed
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Fig. 1. Upper left: A plot of p∗ based on the first simulated data set generated under Model I. Upper right: A plot of p∗ based on the 35th simulated data
set generated under Model I. Lower left: A plot of p∗ based on the first simulated data set generated under Model II. Lower right: A plot of p∗ based on the
first simulated data set generated under Model II but without adjusting the baseline.

in a finite sample situation. For such a reason, this step of the fence method has complicated its applications. In this short
note we propose a simplified procedure that avoids the calculation of σ̂M,M̃ , and study the asymptotic and finite sample
properties of this new procedure.

2. A simplified adaptive fence procedure

We assume that M contains a full model, Mf, of which each candidate model is a submodel. Note that this is not a
serious constraint because usually one can add a full model to M, if it is not already included. For example, for selecting
the fixed covariates one may include a model that contains all the candidate covariates, if such a model is not already under
consideration. It follows that M̃ = Mf. To come up with the new procedure, we absorb the term σ̂M,M̃ on the right side of (1)
into the constant c , which is to be determined adaptively. In other words, we let the adaptive constant take care the product
cσ̂M,M̃ in the fence inequality (1). Under this simplified procedure, a modelM is in the fence if

Q̂M − Q̂Mf ≤ c, (2)

where c is chosen adaptively as follows. For each M ∈ M, let p∗(M) = P∗{M0(c) = M} be the empirical probability of
selection for M , where M0(c) denotes the model selected by the fence procedure based on (2) with the given c , and P∗ is
obtained by bootstrapping underMf. For example, under a parametric model one can estimate the model parameters under
Mf and then use a parametric bootstrap to draw samples underMf. Suppose that B samples are drawn; then p∗(M) is simply
the sample proportion (out of a total of B samples) for whichM is selected by the fence procedure corresponding to (2) with
the given c . Let p∗ = maxM∈M p∗(M). Note that p∗ depends on c . Let c∗ be the c that maximizes p∗ and this is our choice.
Typically the optimal model is neither Mf nor M∗, the minimal model (dimensionwise; e.g., a model with only the

intercept). However, these two extreme cases do need to be dealt with. Here we use the methods of baseline adjustment
and threshold checking to deal with these two cases (see Jiang et al. (2008)). The baseline adjustment is done by generating
an additional vector of covariates, say, Xa, so that it is unrelated to the data. Then, define the model M∗f as Mf plus Xa, and
replace Mf in (2) by M∗f , but let M remain unchanged. This way one knows for sure that the new full model, M∗f , is not an
optimal model (because it is not a candidate model). The threshold checking inequality is given by Q̂M∗ − Q̂M∗f > d∗, where
d∗ is the maximum of the left side of the threshold inequality computed under the bootstrap samples generated underM∗.
If the threshold inequality holds, we ignore the right tail of the plot of p∗ against c that eventually goes up and stays at 1
(see Fig. 1 for a demonstration).
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Another adjustment is also considered. Notice that p∗ is, in fact, a sample proportion (based on the bootstrap samples).
Therefore, we construct a large sample 95% confidence lower bound,

p∗ − 1.96
√
p∗(1− p∗)/B (3)

where B is the bootstrap sample size.When selecting c thatmaximizes p∗we take (3) into account.More specifically, suppose
that there are two peaks in the plot of p∗ against c located at c1 and c2 such that c1 < c2. Let p∗1 and p

∗

2 be the heights of the
peaks corresponding to c1 and c2. As long as p∗1 is greater than the confidence lower bound at p

∗

2 , that is, (3) with p
∗
= p∗2 ,

we choose c1 over c2. Clearly, the selection is in favor of smaller c in order to be more conservative. (In other words, we are
more concerned with underfitting than overfitting.)

3. Consistency

In most practical problems there are a (large) number of candidate variables and only some of them are important. This
means that the optimal model,Mopt, is neither the minimummodelM∗ (because some variables are important) nor the full
modelMf (because not all variables are important). Therefore, without loss of generality we assume the following.
A1. There is a uniqueMopt 6∈ {M∗,Mf}.
The next assumption states that there is a distributional separation betweenMopt and the incorrect models that matters.

LetM− denote the subset of incorrect candidate models that has dimension≤ |Mopt| (|M| represents the dimension ofM).
Write dM = Q̂M − Q̂Mf ,M ∈ M, dopt = dMopt , and d− = minM∈M− dM . Let Fopt and F− be the cumulative distribution functions
of dopt and d−, respectively. Let M0(c) denote the model selected by the fence method using (2) with the given c . Write
P(c) = P{M0(c) = Mopt}.
A2. For any ε > 0, there are 0 < δ < 0.1, c1 < c2 < c3, and N ≥ 1 such that Fopt(c1) > 1− ε, F−(c3) ≤ ε, P(c2) > 1− δ

and 1− 4δ < P(cj) ≤ 1− 3δ, j = 1, 3, if n ≥ N .
Note that the c and cj, j = 1, 2, 3, depend on n, and therefore should be denoted by cn, cn,1, etc., but for notational

simplicity the subscript n is suppressed. The next assumption is about quality of the bootstrap approximation. Let P∗(c)
denotes the bootstrap version of P(c).
A3. For any δ, η > 0, there are N , N∗ such that, when n ≥ N and B ≥ N∗, we have

P
{
sup
c>0
|P∗(c)− P(c)| < δ

}
> 1− η.

The following theorem states the large sample behavior of c∗. The proof of the theorem is very similar to that of Theorem
3 of Jiang et al. (2008), and therefore omitted. LetM∗0 denote themodel selected by the fence procedure using (2)with c = c

∗.
Note that c∗ depends on the observed data, i.e., c∗ = c∗(y). Also letMopt denote an optimal model defined as a true model
with minimum dimension.

Theorem. Under the regularity conditions A1–A3 there is c∗ which is at least a local maximum and an approximate global
maximum of p∗, such that the corresponding M∗0 is consistent in the sense that any δ, η > 0, there are N, N∗ such that
P{p∗(c∗) ≥ 1− δ} ∧ P(M∗0 = Mopt) ≥ 1− η, if n ≥ N and B ≥ N

∗.

4. A simulation study

We consider the following linear mixed model, also known as the nested error regression model:

yij = x′ijβ + vi + eij, i = 1, . . . ,m, j = 1, . . . , ni. (4)

The number of clusters, m, is either 10 or 15. The ni’s are generated from a Poisson (3) distribution, and fixed throughout
the simulations. The random effects, vi, and errors, eij, are both generated independently from the N(0, 1) distribution. The
components of the covariates, xij, are to be selected from xijk, k = 0, 1, . . . , 5, where xij0 = 1; xij1 and xij2 are generated
independently from N(0, 1) and then fixed throughout; xij3 = x2ij1, xij4 = x

2
ij2, and xij5 = xij1xij2.

The simulated data are generated under twomodels: I. the model that involves the linear terms only, i.e., xkij, k = 0, 1, 2,
with all the regression coefficients equal to 1; II. the model that involves both the linear and the quadratic terms, i.e., xkij,
k = 0, . . . , 5, with all the regression coefficients equal to 1. We study the performance of the adaptive fence procedure
introduced in Section 2 with or without using the confidence lower bound (3). Here QM is chosen as the negative log-
likelihood function. The bootstrap sample size B is chosen as 100. The results based on 100 simulations are reported in
Table 1 which presents the empirical probabilities of correct model selection. The results show that even in these cases of
fairly smallm, the performance of the adaptive fence is quite satisfactory. Note that for Model I, themethod does not behave
quite as well for them = 10 case as for Model II, but that this problem quickly disappears by the timem = 15. The method
that makes use of the confidence lower bound seems to perform better in the smallerm case but for the case of largerm the
two methods are indistinguishable.
Fig. 1 displays some of the plots of p∗ against c in various situations. The upper left plot is based on the first simulated

data set generated under Model I. This plot is typical for most of the plots generated under Model I, where the highest peak
in the middle corresponds to c∗. The upper right plot is based on the 35th simulated data set generated under Model II.
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Table 1
Mixed model selection. Reported are empirical probabilities, in terms of percentage, based on 100 simulations for which the optimal model is selected.

Optimal model # of clusters,m Highest peak Confidence lower bound

Model I 10 82 87
Model I 15 99 99
Model II 10 98 99
Model II 15 100 100

This data set is singled out because its plot is a little unusual compared to the typical situations. There are two peaks in the
middle of almost the same height. In fact, the second peak (near c = 27) is slightly higher, although the difference is hardly
distinguishable to the naked eye. However, if we choose the c∗ corresponding to the second peak, we arrive at an incorrect
model that has the intercept and one of the linear terms only. On the other hand, by using the confidence lower bound we
will choose c∗ corresponding to the first peak (near c = 12). This gives us Model I which is the optimal model. This plot
is very helpful in illustrating the usefulness of confidence lower bound. The lower left plot is based on the first simulated
data set generated under Model II, which is typical for plots generated under Model II. The lower right plot is based on the
same data set but without adjusting the baseline. What happens is that, unlike for the lower left plot, there is no peak in the
middle, which is typical for plots generated under Model II but without adjusting the baseline. This plot helps to explain the
reason for the baseline adjustment. It should be pointed out that the threshold inequality holds in all these cases; therefore
one should ignore the right tails of the plots.

5. Iowa crops data

One of the well-known problems in small area estimation was discussed in Battese et al. (1988), in which the authors
presented data from12 Iowa counties obtained from the 1978 June Enumerative Survey of theU.S. Department of Agriculture
as well as data obtained from land observatory satellites on crop areas involving corn and soybeans. The objective was to
predict mean hectares of corn and soybeans per segment for the 12 counties using the satellite information. In this paper,
the authors introduced for the first time the nested error regression model that has since become popular in small area
estimation (e.g., Rao (2003)). Theirmodel can be expressed as (4)with x′ijβ = β0+β1xij1+β2xij2, i = 1, . . . , 12, j = 1, . . . , ni,
whereni ranges from1 to 6. Here i represents county and j segmentwithin the county; yij is the number of hectares of corn (or
soybeans); xij1 and xij2 are the number of pixels classified as corn and soybeans, respectively, according to the satellite data.
Furthermore, vi is a small area specific random effect, and eij is the sampling error. It is assumed that the random effects are
independent and distributed as N(0, σ 2v ), the sampling errors are independent and distributed as N(0, σ

2
e ), and the random

effects and sampling errors are uncorrelated. The authors discussed various model selection problems associated with the
nested error regression, such as whether or not to include quadratic terms in the model. The model chosen by Battese et al.
(1988), however, involved only linear terms.
We apply the simplified adaptive fence procedure of Section 2 to this data set. Here we consider the same group of

variables as in our simulation study in Section 4, where xij0 = 1; xij1 and xij2 are defined above; xij3 = x2ij1, xij4 = x
2
ij2 and

xij5 = xij1xij2. We use a predictive measure of lack-of-fit which is the squared Euclidean distance between the best linear
predictor of the small area means and the empirical best predictor under the full model as QM . In addition, we consider
models with or without the random effect vi. The optimal models selected by the fence method are, for the corn data,
yij = β0+β1xij1+ vi+ eij; and, for the soybeans data, yij = β0+β2xij2+ vi+ eij. (Note that the intercept may have different
values under the two models even though the same notation is used.) In particular, both models have included the random
effect vi. This suggests extra variation in the data being present that is captured by the random effect. Also, bothmodels have
excluded the quadratic terms. These findings are in line with Battese et al. (1988). The main difference is that the models
chosen by the fence method are simpler than those of Battese et al. (1988). Namely, the model for the corn data involves
only the satellite information about the corn, while that for the soybeans data involves only the satellite information about
the soybeans. Satellite data for both corn and soybeans were involved in both models of Battese et al. (1988). Fig. 2 shows
the plot of p∗ against c that led to the fencemodel selection. Note that themodels selected by the fencemethod corresponds
to the first significant peak, which is a more conservative choice in a small sample situation (Nguyen, 2008). Also note that,
unlike Fig. 1, these plots are generated without the baseline adjustment proposed by Jiang et al. (2008), which was adopted
in our simulation study in Section 4. As pointed out by Jiang et al. (2008, pp. 1679), in practice such an adjustment is usually
unnecessary if the peak in the middle is obvious.

6. Concluding remarks

The simple modification of the adaptive fence method proposed in this short note has important practical implications.
As mentioned, for complex problems the computation of σ̂M,M̃ is nontrivial. Even if a formula can be obtained for σ̂M,M̃ ,
the computational burden significantly increases with the adaptive procedure due to the need for bootstrapping. Therefore,
the proposed simplification is an important step towards making the fence method more suitable for a wide variety of
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Fig. 2. Plots of p∗ against c for the Iowa crops data. Left plot: Model selection for the corn data; Right plot: Model selection for the soybeans data. The first
significant peak in each plot corresponds to the model selected by the fence.

problems. Furthermore, we show that the proposed simplification maintains consistency as well as the excellent finite
sample performance of the original adaptive fence method (Jiang et al., 2008).
As pointed by Jiang et al. (2008), traditionalmethods such as the information criteria are not suitable for nonconventional

problems such as mixed model selection. Still, these methods are being used in practice for selecting mixed effects models.
A question of interest then is how does the fence method compare to the information criteria in mixed model selection,
even though the latter methods may be considered ad hoc in such situations. A simulation study was recently carried
out by Nguyen (2008), in which the author compared a version of adaptive fence method with different information
criteria, including AIC, BIC, CAIC (consistent AIC, Bozdogan (1987)) and HQ (Hannan and Quinn, 1979), in selecting a linear
mixed model for longitudinal data with many candidate covariates. (The intention was to develop a fence method for
high-dimensional model selection problems.) The results showed that the fence method significantly outperformed all the
traditional methods that it was being compared with in this case.
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